OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 20 — Sep. 26, 2011
  • pp: 19245–19254

Digital holographic tracking of microprobes for multipoint viscosity measurements

G. Bolognesi, S. Bianchi, and R. Di Leonardo  »View Author Affiliations

Optics Express, Vol. 19, Issue 20, pp. 19245-19254 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1386 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Digital holographic microscopy provides an ideal tool for 3D tracking of microspheres while simultaneously allowing a full and accurate characterization of their main physical properties such as: radius and refractive index. We demonstrate that the combination of high resolution multipoint tracking and accurate optical sizing of tracers provides an ideal tool for precise multipoint viscosity measurements. We also report a detailed evaluation of the technique’s accuracy and precision in relation to the primary sources of error.

© 2011 OSA

OCIS Codes
(020.7010) Atomic and molecular physics : Laser trapping
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(180.6900) Microscopy : Three-dimensional microscopy
(090.1995) Holography : Digital holography

ToC Category:

Original Manuscript: February 7, 2011
Revised Manuscript: April 8, 2011
Manuscript Accepted: June 2, 2011
Published: September 19, 2011

Virtual Issues
Vol. 6, Iss. 10 Virtual Journal for Biomedical Optics

G. Bolognesi, S. Bianchi, and R. Di Leonardo, "Digital holographic tracking of microprobes for multipoint viscosity measurements," Opt. Express 19, 19245-19254 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003). [CrossRef] [PubMed]
  2. G. Spalding, J. Courtial, and R. Di Leonardo, “Holographic optical tweezers,” in Structured Light and its Applications: an Introduction to Phase-Structured Beams and Nanoscale Optical Forces (Elsevier, 2008), p. 139.
  3. R. Di Leonardo, J. Leach, H. Mushfique, J. Cooper, G. Ruocco, and M. Padgett, “Multipoint holographic optical velocimetry in microfluidic systems,” Phys. Rev. Lett. 96, 134502 (2006). [CrossRef] [PubMed]
  4. H. Mushfique, J. Leach, H. Yin, R. Di Leonardo, M. Padgett, and J. Cooper, “3D mapping of microfluidic flow in laboratory-on-a-chip structures using optical tweezers,” Anal. Chem. 80, 4237–4240 (2008). [CrossRef] [PubMed]
  5. M. Valentine, L. Dewalt, and H. Ou-Yang, “Forces on a colloidal particle in a polymer solution: a study using optical tweezers,” J. Phys. Condens. Matter 8, 9477 (1996). [CrossRef]
  6. G. Pesce, A. Sasso, and S. Fusco, “Viscosity measurements on micron-size scale using optical tweezers,” Rev. Sci. Instrum. 76, 115105 (2005). [CrossRef]
  7. A. Buosciolo, G. Pesce, and A. Sasso, “New calibration method for position detector for simultaneous measurements of force constants and local viscosity in optical tweezers,” Opt. Commun. 230, 357–368 (2004). [CrossRef]
  8. A. Bishop, T. Nieminen, N. Heckenberg, and H. Rubinsztein-Dunlop, “Optical microrheology using rotating laser-trapped particles,” Phys. Rev. Lett. 92, 198104 (2004).
  9. A. Yao, M. Tassieri, M. Padgett, and J. Cooper, “Microrheology with optical tweezers,” Lab on a Chip 9, 2568–2575 (2009). [CrossRef] [PubMed]
  10. N. Klauke, P. Monaghan, G. Sinclair, M. Padgett, and J. Cooper, “Characterisation of spatial and temporal changes in pH gradients in microfluidic channels using optically trapped fluorescent sensors,” Lab on a Chip 6, 788–793 (2006). [CrossRef] [PubMed]
  11. D. Weihs, T. Mason, and M. Teitell, “Bio-microrheology: a frontier in microrheology,” Biophys. J. 91, 4296–4305 (2006). [CrossRef] [PubMed]
  12. J. Crocker and D. Grier, “Methods of digital video microscopy for colloidal studies,” J. Colloid Interface Sci. 179, 298–310 (1996). [CrossRef]
  13. J. Sheng, E. Malkiel, and J. Katz, “Digital holographic microscope for measuring three-dimensional particle distributions and motions,” Appl. Opt. 45, 3893–3901 (2006). [CrossRef] [PubMed]
  14. M. Allersma, F. Gittes, M. deCastro, R. Stewart, and C. Schmidt, “Two-dimensional tracking of ncd motility by back focal plane interferometry,” Biophys. J. 74, 1074–1085 (1998). [CrossRef] [PubMed]
  15. M. Fischer and K. Berg-Sørensen, “Calibration of trapping force and response function of optical tweezers in viscoelastic media,” J. Opt. A, Pure Appl. Opt. 9, S239 (2007). [CrossRef]
  16. M. Atakhorrami, J. Sulkowska, K. Addas, G. Koenderink, J. Tang, A. Levine, F. MacKintosh, and C. Schmidt, “Correlated fluctuations of microparticles in viscoelastic solutions: quantitative measurement of material properties by microrheology in the presence of optical traps,” Phys. Rev. E 73, 061501 (2006). [CrossRef]
  17. J. Meiners and S. Quake, “Direct measurement of hydrodynamic cross correlations between two particles in an external potential,” Phys. Rev. Lett. 82, 2211–2214 (1999). [CrossRef]
  18. S. Keen, A. Yao, J. Leach, R. Di Leonardo, C. Saunter, G. Love, J. Cooper, and M. Padgett, “Multipoint viscosity measurements in microfluidic channels using optical tweezers.” Lab on a Chip 9, 2059 (2009). [CrossRef] [PubMed]
  19. E. Schäffer, S.F.. Nørrelykke, and J. Howard, “Surface forces and drag coefficients of microspheres near a plane surface measured with optical tweezers,” Langmuir 23, 3654 (2007). [CrossRef] [PubMed]
  20. S. Lee, Y. Roichman, G. Yi, S. Kim, S. Yang, A. Van Blaaderen, P. Van Oostrum, and D. Grier, “Characterizing and tracking single colloidal particles with video holographic microscopy,” Opt. Express 15, 18275–18282 (2007). [CrossRef] [PubMed]
  21. U. Schnars and W. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33, 179–181 (1994). [CrossRef] [PubMed]
  22. E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38, 6994–7001 (1999). [CrossRef]
  23. U. Schnars and W. Jüptner, “Digital recording and numerical reconstruction of holograms,” Measurement science and technology 13, R85 (2002). [CrossRef]
  24. W. Xu, M. Jericho, I. Meinertzhagen, and H. Kreuzer, “Digital in-line holography of microspheres,” Appl. Opt. 41, 5367–5375 (2002). [CrossRef] [PubMed]
  25. J. Garcia-Sucerquia, W. Xu, S. Jericho, P. Klages, M. Jericho, and H. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836–850 (2006). [CrossRef] [PubMed]
  26. S. Lee and D. Grier, “Holographic microscopy of holographically trapped three-dimensional structures,” Opt. Express 15, 1505–1512 (2007). [CrossRef] [PubMed]
  27. F. Cheong and D. Grier, “Rotational and translational diffusion of copper oxide nanorods measured with holographic video microscopy,” Opt. Express 18, 6555–6562 (2010). [CrossRef] [PubMed]
  28. F. Cheong, B. Krishnatreya, and D. Grier, “Strategies for three-dimensional particle tracking with holographic video microscopy,” Opt. Express 18, 13563–13573 (2010). [CrossRef] [PubMed]
  29. F. Cheong, B. Sun, R. Dreyfus, J. Amato-Grill, K. Xiao, L. Dixon, and D. Grier, “Flow visualization and flow cytometry with holographic video microscopy,” Opt. Express 17, 13071–13079 (2009). [CrossRef] [PubMed]
  30. F. Cheong, K. Xiao, and D. Grier, “Technical note: Characterizing individual milk fat globules with holographic video microscopy,” J. Dairy Sci. 92, 95–99 (2009). [CrossRef]
  31. K. Xiao and D. G. Grier, “Multidimensional Optical Fractionation of Colloidal Particles with Holographic Verification,” Phys. Rev. Lett. 104, 028302 (2010). [CrossRef] [PubMed]
  32. J. Crocker, “Measurement of the hydrodynamic corrections to the Brownian motion of two colloidal spheres,” J. Chem. Phys. 106, 2837–2840 (1997). [CrossRef]
  33. C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 2010).
  34. F. Dubois, L. Joannes, and J. Legros, “Improved three-dimensional imaging with a digital holography microscope with a source of partial spatial coherence,” Appl. Opt. 38, 7085–7094 (1999). [CrossRef]
  35. H. Faxén, “Der Widerstand gegen die Bewegung einer starren Kugel in einer zähen Flüssigkeit, die zwischen zwei parallelen ebenen Wänden eingeschlossen ist,” Ann. Phys. 373, 89–119 (1922). [CrossRef]
  36. J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics: with Special Applications to Particulate Media (Kluwer Academic Print on Demand, 1991).
  37. J. Leach, H. Mushfique, S. Keen, R. Di Leonardo, G. Ruocco, J. Cooper, and M. Padgett, “Comparison of Faxéns correction for a microsphere translating or rotating near a surface,” Phys. Rev. E 79, 26301 (2009). [CrossRef]
  38. T. Savin and P. Doyle, “Role of a finite exposure time on measuring an elastic modulus using microrheology,” Phys. Rev. E 71, 41106 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited