OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 20 — Sep. 26, 2011
  • pp: 19255–19264

Photonic crystal digital alloys and their band structure properties

Jeongkug Lee, Dong-Uk Kim, and Heonsu Jeon  »View Author Affiliations

Optics Express, Vol. 19, Issue 20, pp. 19255-19264 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1354 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigated semi-disordered photonic crystals (PCs), digital alloys, and made thorough comparisons with their counterparts, random alloys. A set of diamond lattice PC digital alloys operating in a microwave regime were prepared by alternately stacking two kinds of sub-PC systems composed of alumina and silica spheres of the same size. Measured transmission spectra as well as calculated band structures revealed that when the digital alloy period is short, band-gaps of the digital alloys are practically the same as those of the random alloys. This study indicates that the concept of digital alloys holds for photons in PCs as well.

© 2011 OSA

OCIS Codes
(350.4010) Other areas of optics : Microwaves
(160.5293) Materials : Photonic bandgap materials
(160.5298) Materials : Photonic crystals
(160.2710) Materials : Inhomogeneous optical media

ToC Category:
Photonic Crystals

Original Manuscript: June 14, 2011
Revised Manuscript: August 4, 2011
Manuscript Accepted: September 11, 2011
Published: September 19, 2011

Jeongkug Lee, Dong-Uk Kim, and Heonsu Jeon, "Photonic crystal digital alloys and their band structure properties," Opt. Express 19, 19255-19264 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987). [CrossRef] [PubMed]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987). [CrossRef] [PubMed]
  3. B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005). [CrossRef]
  4. E. Istrate and E. H. Sargent, “Photonic crystal heterostructures and interfaces,” Rev. Mod. Phys. 78(2), 455–481 (2006). [CrossRef]
  5. T. Schwartz, G. Bartal, S. Fishman, and M. Segev, “Transport and Anderson localization in disordered two-dimensional photonic lattices,” Nature 446(7131), 52–55 (2007). [CrossRef] [PubMed]
  6. C. Conti and A. Fratalocchi, “Dynamic light diffusion, three-dimensional Anderson localization and lasing in inverted opals,” Nat. Phys. 4(10), 794–798 (2008). [CrossRef]
  7. P. W. Anderson, “Absence of diffusion in certain random lattices,” Phys. Rev. 109(5), 1492–1505 (1958). [CrossRef]
  8. Z. I. Alferov, V. M. Andreev, D. Z. Garbuzov, Y. V. Zhilyaev, E. P. Morozov, E. L. Portnoi, and V. G. Trofim, “Investigation of the influence of the AlAs–GaAs heterostructure parameters on the laser threshold current and the realization of continuous emission at room temperature,” Sov. Phys. Semicond. 4, 1573–1575 (1971).
  9. I. Hayashi, M. B. Panish, P. W. Foy, and S. Sumski, “Junction lasers which operate continuously at room temperature,” Appl. Phys. Lett. 17(3), 109–111 (1970). [CrossRef]
  10. H. Kroemer, “Theory of a wide-gap emitter for transistors,” Proc. IRE 45, 1535–1537 (1957).
  11. H. J. Kim, Y.-G. Roh, and H. Jeon, “Photonic bandgap engineering in mixed colloidal photonic crystals,” Jpn. J. Appl. Phys. 44(40), L1259–L1262 (2005). [CrossRef]
  12. H. J. Kim, D.-U. Kim, Y.-G. Roh, J. Yu, H. Jeon, and Q. H. Park, “Photonic crystal alloys: a new twist in controlling photonic band structure properties,” Opt. Express 16(9), 6579–6585 (2008). [CrossRef] [PubMed]
  13. S. Kim, S. Yoon, H. Seok, J. Lee, and H. Jeon, “Band-edge lasers based on randomly mixed photonic crystals,” Opt. Express 18(8), 7685–7692 (2010). [CrossRef] [PubMed]
  14. F. Capasso, “Band-gap engineering: from physics and materials to new semiconductor devices,” Science 235(4785), 172–176 (1987). [CrossRef] [PubMed]
  15. L. Nordheim, “The electron theory of metals,” Ann. Phys Lpz. 9(5), 607–640 (1931). [CrossRef]
  16. Y.-H. Zhang and D. H. Chow, “Improved crystalline quality of AlAsxSb1-x grown on InAs by modulated molecular-beam epitaxy,” Appl. Phys. Lett. 65(25), 3239–3241 (1994). [CrossRef]
  17. P. Jiang, G. N. Ostojic, R. Narat, D. M. Mittleman, and V. L. Colvin, “The fabrication and bandgap engineering of photonic multilayers,” Adv. Mater. (Deerfield Beach Fla.) 13(6), 389–393 (2001). [CrossRef]
  18. K. Baert, K. Song, R. A. L. Vallée, M. Van der Auweraer, and K. Clays, “Spectral narrowing of emission in self-assembled colloidal photonic superlattices,” J. Appl. Phys. 100(12), 123112 (2006). [CrossRef]
  19. N. C. Panoiu, R. M. Osgood, S. Zhang, and S. R. J. Brueck, “Zero-n bandgap in photonic crystal superlattices,” J. Opt. Soc. Am. B 23(3), 506–513 (2006). [CrossRef]
  20. R. Rengarajan, P. Jiang, D. C. Larrabee, V. L. Colvin, and D. M. Mittleman, “Colloidal photonic superlattices,” Phys. Rev. B 64(20), 205103 (2001). [CrossRef]
  21. K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65(25), 3152–3155 (1990). [CrossRef] [PubMed]
  22. C. Kittel, Introduction to Solid State Physics (John Wiley & Sons, New York, 1974).
  23. L. Vegard, “Die Konstitution der Mischkristalle und die Raumfüllung der Atome,” Z. Phys. 5(1), 17–26 (1921). [CrossRef]
  24. R. Kaspi and G. P. Donati, “Digital alloy growth in mixed As/Sb heterostructures,” J. Cryst. Growth 251(1-4), 515–520 (2003). [CrossRef]
  25. M. A. Khan, J. N. Kuznia, D. T. Olson, T. George, and W. T. Pike, “GaN/AlN digital alloy short-period superlattices by switched atomic layer metalorganic chemical vapor deposition,” Appl. Phys. Lett. 63(25), 3470–3472 (1993). [CrossRef]
  26. J. D. Song, D. C. Heo, I. K. Han, J. M. Kim, Y. T. Lee, and S.-H. Park, “Parametric study on optical properties of digital-alloy In(Ga1-zAlz)As/InP grown by molecular-beam epitaxy,” Appl. Phys. Lett. 84(6), 873–875 (2004). [CrossRef]
  27. İ. İ. Tarhan and G. H. Watson, “Photonic band structure of fcc colloidal crystals,” Phys. Rev. Lett. 76(2), 315–318 (1996). [CrossRef] [PubMed]
  28. L. Esaki and R. Tsu, “Superlattice and negative differential conductivity in semiconductors,” IBM J. Res. Develop. 14(1), 61–65 (1970). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited