OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 20 — Sep. 26, 2011
  • pp: 19265–19279

Accuracy of the reconstruction of the crystalline lens gradient index with optimization methods from Ray Tracing and Optical Coherence Tomography data

Alberto de Castro, Sergio Barbero, Sergio Ortiz, and Susana Marcos  »View Author Affiliations


Optics Express, Vol. 19, Issue 20, pp. 19265-19279 (2011)
http://dx.doi.org/10.1364/OE.19.019265


View Full Text Article

Enhanced HTML    Acrobat PDF (1230 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The accuracy of the reconstruction of the Gradient Refractive Index (GRIN) of the crystalline lens from optimization methods was evaluated. Different input data, including direction cosines of deflected rays, ray impacts obtained from ray tracing and optical path differences from Optical Coherence Tomography (OCT) were studied. Three different GRIN models were analyzed. The experimental errors of the different experimental input data were estimated from comparisons of measurements and simulations using artificial lenses of known geometries. The experimental errors in the surfaces shape measurement and the influence of the number of rays were also considered. OCT-based input data produced the most accurate GRIN reconstructions. We found that optimization methods (combining global and local search algorithms) allow GRIN reconstructions with acceptable accuracies for moderate noise level.

© 2011 OSA

OCIS Codes
(080.2710) Geometric optics : Inhomogeneous optical media
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(330.0330) Vision, color, and visual optics : Vision, color, and visual optics

ToC Category:
Vision, Color, and Visual Optics

History
Original Manuscript: June 16, 2011
Revised Manuscript: August 6, 2011
Manuscript Accepted: August 30, 2011
Published: September 19, 2011

Citation
Alberto de Castro, Sergio Barbero, Sergio Ortiz, and Susana Marcos, "Accuracy of the reconstruction of the crystalline lens gradient index with optimization methods from Ray Tracing and Optical Coherence Tomography data," Opt. Express 19, 19265-19279 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-20-19265


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. F. Garner and G. Smith, “Changes in equivalent and gradient refractive index of the crystalline lens with accommodation,” Optom. Vis. Sci.74(2), 114–119 (1997). [CrossRef] [PubMed]
  2. G. Smith, D. A. Atchison, and B. K. Pierscionek, “Modeling the power of the aging human eye,” J. Opt. Soc. Am. A9(12), 2111–2117 (1992). [CrossRef] [PubMed]
  3. B. A. Moffat, D. A. Atchison, and J. M. Pope, “Age-related changes in refractive index distribution and power of the human lens as measured by magnetic resonance micro-imaging in vitro,” Vision Res.42(13), 1683–1693 (2002). [CrossRef] [PubMed]
  4. A. de Castro, D. Siedlecki, D. Borja, S. Uhlhorn, J. M. Parel, F. Manns, and S. Marcos, “Age-dependent variation of the gradient index profile in human crystalline lenses,” J. Mod. Opt. (2011). [CrossRef]
  5. A. Huggert, The iso-indicial surfaces of the human crystalline lens (Acta Ophthalmologica supplementum, Stockholm, 1948).
  6. R. Weale, “The ageing eye,” in The Lens, H. K. Lewis, ed. (London, 1963).
  7. B. K. Pierscionek, “Refractive index contours in the human lens,” Exp. Eye Res.64(6), 887–893 (1997). [CrossRef] [PubMed]
  8. M. C. Campbell and A. Hughes, “An analytic, gradient index schematic lens and eye for the rat which predicts aberrations for finite pupils,” Vision Res.21(7), 1129–1148 (1981). [CrossRef] [PubMed]
  9. D. Y. Chan, J. P. Ennis, B. K. Pierscionek, and G. Smith, “Determination and modeling of the 3-D gradient refractive indices in crystalline lenses,” Appl. Opt.27(5), 926–931 (1988). [CrossRef] [PubMed]
  10. G. Beliakov and D. Y. Chan, “Analysis of inhomogeneous optical systems by the use of ray tracing. I. Planar systems,” Appl. Opt.36(22), 5303–5309 (1997). [CrossRef] [PubMed]
  11. E. Acosta, D. Vazquez, L. Garner, and G. Smith, “Tomographic method for measurement of the gradient refractive index of the crystalline lens. I. The spherical fish lens,” J. Opt. Soc. Am. A22(3), 424–433 (2005). [CrossRef] [PubMed]
  12. D. Vazquez, E. Acosta, G. Smith, and L. Garner, “Tomographic method for measurement of the gradient refractive index of the crystalline lens. II. The rotationally symmetrical lens,” J. Opt. Soc. Am. A23(10), 2551–2565 (2006). [CrossRef] [PubMed]
  13. C. E. Jones, D. A. Atchison, R. Meder, and J. M. Pope, “Refractive index distribution and optical properties of the isolated human lens measured using magnetic resonance imaging (MRI),” Vision Res.45(18), 2352–2366 (2005). [CrossRef] [PubMed]
  14. S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “In vivo study of changes in refractive index distribution in the human crystalline lens with age and accommodation,” Invest. Ophthalmol. Vis. Sci.49(6), 2531–2540 (2008). [CrossRef] [PubMed]
  15. O. Pomerantzeff, M. Pankratov, G. J. Wang, and P. Dufault, “Wide-angle optical model of the eye,” Am. J. Optom. Physiol. Opt.61(3), 166–176 (1984). [PubMed]
  16. L. F. Garner, G. Smith, S. Yao, and R. C. Augusteyn, “Gradient refractive index of the crystalline lens of the Black Oreo Dory (Allocyttus Niger): comparison of magnetic resonance imaging (MRI) and laser ray-trace methods,” Vision Res.41(8), 973–979 (2001). [CrossRef] [PubMed]
  17. S. Barbero, A. Glasser, C. Clark, and S. Marcos, “Accuracy and possibilities for evaluating the lens gradient-index using a ray tracing tomography global optimization strategy,” Invest. Ophthalmol. Vis. Sci.45, 1723 (2004).
  18. S. Ortiz, S. Barbero, and S. Marcos, “Computer simulations of optical coherence tomography A-scans: what can we learn about refractive index distribution?” Invest. Ophthalmol. Vis. Sci.45, 2781 (2004).
  19. Y. Verma, K. D. Rao, M. K. Suresh, H. S. Patel, and P. K. Gupta, “Measurement of gradient refractive index profile of crystalline lens of fisheye in vivo using optical coherence tomography,” Appl. Phys. B87(4), 607–610 (2007). [CrossRef]
  20. A. de Castro, S. Ortiz, E. Gambra, D. Siedlecki, and S. Marcos, “Three-dimensional reconstruction of the crystalline lens gradient index distribution from OCT imaging,” Opt. Express18(21), 21905–21917 (2010). [CrossRef] [PubMed]
  21. O. Pomerantzeff, H. Fish, J. Govignon, and C. L. Schepens, “Wide angle optical model of the human eye,” Ann. Ophthalmol.3(8), 815–819 (1971). [PubMed]
  22. I. H. Al-Ahdali and M. A. El-Messiery, “Examination of the effect of the fibrous structure of a lens on the optical characteristics of the human eye: a computer-simulated model,” Appl. Opt.34(25), 5738–5745 (1995). [CrossRef] [PubMed]
  23. A. Popiolek Masajada, “Numerical study of the influence of the shell structure of the crystalline lens on the refractive properties of the human eye,” Ophthalmic Physiol. Opt.19(1), 41–49 (1999). [CrossRef] [PubMed]
  24. D. O. Mutti, K. Zadnik, and A. J. Adams, “The equivalent refractive index of the crystalline lens in childhood,” Vision Res.35(11), 1565–1573 (1995). [CrossRef] [PubMed]
  25. Y.-J. Liu, Z.-Q. Wang, L.-P. Song, and G.-G. Mu, “An anatomically accurate eye model with a shell-structure lens,” Optik Internat. J. Light Electron. Opt.116(6), 241–246 (2005). [CrossRef]
  26. C. E. Campbell, “Nested shell optical model of the lens of the human eye,” J. Opt. Soc. Am. A27(11), 2432–2441 (2010). [CrossRef] [PubMed]
  27. A. Gullstrand, Handbuch der Physiologitschen Optik, 3rd ed. 1909. J. P. Southall trans., (Optical Society of America, 1924).
  28. J. W. Blaker, “Toward an adaptive model of the human eye,” J. Opt. Soc. Am.70(2), 220–223 (1980). [CrossRef] [PubMed]
  29. G. Smith, B. K. Pierscionek, and D. A. Atchison, “The optical modelling of the human lens,” Ophthalmic Physiol. Opt.11(4), 359–369 (1991). [CrossRef] [PubMed]
  30. B. K. Pierscionek and D. Y. Chan, “Refractive index gradient of human lenses,” Optom. Vis. Sci.66(12), 822–829 (1989). [CrossRef] [PubMed]
  31. R. Navarro, F. Palos, and L. M. González, “Adaptive model of the gradient index of the human lens. II. Optics of the accommodating aging lens,” J. Opt. Soc. Am. A24(9), 2911–2920 (2007). [CrossRef] [PubMed]
  32. F. Manns, A. Ho, D. Borja, and J. M. Parel, “Comparison of Uniform and Gradient Paraxial Models of the Crystalline Lens,” Invest. Ophthalmol. Vis. Sci.51, 789 (2010).
  33. H. L. Liou and N. A. Brennan, “Anatomically accurate, finite model eye for optical modeling,” J. Opt. Soc. Am. A14(8), 1684–1695 (1997). [CrossRef] [PubMed]
  34. M. A. Rama, M. V. Pérez, C. Bao, M. T. Flores-Arias, and C. Gómez-Reino, “Gradient-index crystalline lens model: A new method for determining the paraxial properties by the axial and field rays,” Opt. Commun.249(4-6), 595–609 (2005). [CrossRef]
  35. J. A. Díaz, C. Pizarro, and J. Arasa, “Single dispersive gradient-index profile for the aging human lens,” J. Opt. Soc. Am. A25(1), 250–261 (2008). [CrossRef] [PubMed]
  36. A. V. Goncharov and C. Dainty, “Wide-field schematic eye models with gradient-index lens,” J. Opt. Soc. Am. A24(8), 2157–2174 (2007). [CrossRef] [PubMed]
  37. A. V. Goncharov, M. Nowakowski, M. T. Sheehan, and C. Dainty, “Reconstruction of the optical system of the human eye with reverse ray-tracing,” Opt. Express16(3), 1692–1703 (2008). [CrossRef] [PubMed]
  38. I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera,” Opt. Express17(6), 4842–4858 (2009). [CrossRef] [PubMed]
  39. S. Ortiz, D. Siedlecki, L. Remon, and S. Marcos, “Optical coherence tomography for quantitative surface topography,” Appl. Opt.48(35), 6708–6715 (2009). [CrossRef] [PubMed]
  40. S. Ortiz, D. Siedlecki, I. Grulkowski, L. Remon, D. Pascual, M. Wojtkowski, and S. Marcos, “Optical distortion correction in optical coherence tomography for quantitative ocular anterior segment by three-dimensional imaging,” Opt. Express18(3), 2782–2796 (2010). [CrossRef] [PubMed]
  41. O. N. Stavroudis, “Ray tracing,” in The optics of rays, wavefronts and caustics, N. Y. A. Press, ed. (1972).
  42. A. Sharma, D. V. Kumar, and A. K. Ghatak, “Tracing rays through graded-index media: a new method,” Appl. Opt.21(6), 984–987 (1982). [CrossRef] [PubMed]
  43. B. D. Stone and G. W. Forbes, “Optimal interpolants for Runge-Kutta ray tracing in inhomogeneous media,” J. Opt. Soc. Am. A7(2), 248–254 (1990). [CrossRef]
  44. J. H. Holland, Adaptation in natural and artificial systems (The University of Michigan press, 1975).
  45. J. A. Nelder and R. Mead, “A Simplex Method for Function Minimization,” Comput. J.7, 308–313 (1965).
  46. J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence properties of the Nelder-Mead simplex method in low dimensions,” SIAM J. Optim.9(1), 112–147 (1998). [CrossRef]
  47. D. Vasiljevic, Classical and evolutionary algorithms in the optimization of optical systems (Kluwer Academc Publishers Boston/Dordrecht/London, 2002), p. 296.
  48. S. R. Uhlhorn, D. Borja, F. Manns, and J.-M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res.48(27), 2732–2738 (2008). [CrossRef] [PubMed]
  49. D. A. Atchison and G. Smith, “Chromatic dispersions of the ocular media of human eyes,” J. Opt. Soc. Am. A22(1), 29–37 (2005). [CrossRef] [PubMed]
  50. E. Moreno-Barriuso and R. Navarro, “Laser Ray Tracing versus Hartmann-Shack sensor for measuring optical aberrations in the human eye,” J. Opt. Soc. Am. A17(6), 974–985 (2000). [CrossRef] [PubMed]
  51. E. Moreno-Barriuso, S. Marcos, R. Navarro, and S. A. Burns, “Comparing laser ray tracing, the spatially resolved refractometer, and the Hartmann-Shack sensor to measure the ocular wave aberration,” Optom. Vis. Sci.78(3), 152–156 (2001). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited