OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 20 — Sep. 26, 2011
  • pp: 19280–19295

Dyadic Green’s function for aplanatic solid immersion lens based sub-surface microscopy

Li Hu, Rui Chen, Krishna Agarwal, Colin J. R. Sheppard, Jacob C. H. Phang, and Xudong Chen  »View Author Affiliations


Optics Express, Vol. 19, Issue 20, pp. 19280-19295 (2011)
http://dx.doi.org/10.1364/OE.19.019280


View Full Text Article

Enhanced HTML    Acrobat PDF (1556 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present the derivation of the dyadic Green’s function for the aplanatic solid immersion lens based microscopy system. The presented dyadic Green’s function is general and is applicable at non-aplanatic points as well in the object plane. Thus, the electromagnetic wave formulation is used to describe the optical system without paraxial assumptions. Various important and useful properties of SIL based microscopy system are also presented. The effect of the numerical aperture of the objective on the peak intensities, resolutions and the depth of field are also reported. Some interesting longitudinal effects are also reported.

© 2011 OSA

OCIS Codes
(110.0180) Imaging systems : Microscopy
(260.2110) Physical optics : Electromagnetic optics

ToC Category:
Imaging Systems

History
Original Manuscript: June 24, 2011
Revised Manuscript: August 4, 2011
Manuscript Accepted: August 29, 2011
Published: September 19, 2011

Virtual Issues
Vol. 6, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Li Hu, Rui Chen, Krishna Agarwal, Colin J. R. Sheppard, Jacob C. H. Phang, and Xudong Chen, "Dyadic Green’s function for aplanatic solid immersion lens based sub-surface microscopy," Opt. Express 19, 19280-19295 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-20-19280


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near-field optical data storage using solid immersion lens,” Appl. Phys. Lett.65(4), 388–390 (1994). [CrossRef]
  2. S. B. Ippolito, B. B. Goldberg, and M. S. Unlu, “High spatial resolution subsurface microscopy,” Appl. Phys. Lett.78(26), 4071–4073 (2001). [CrossRef]
  3. A. Nickolas Vamivakas, R. D. Younger, B. B. Goldberg, A. K. Swan, M. S. Ünlü, E. R. Behringer, and S. B. Ippolito, “A case study for optics: The solid immersion microscope,” Am. J. Phys.76(8), 758–768 (2008). [CrossRef]
  4. Q. Wu, L. P. Ghislain, and V. B. Elings, “Imaging with solid immersion lenses, spatial resolution, and applications,” Proc. IEEE88(9), 1491–1498 (2000). [CrossRef]
  5. L. E. Helseth, “Roles of polarization, phase and amplitude in solid immersion lens systems,” Opt. Commun.191(3-6), 161–172 (2001). [CrossRef]
  6. R. Brunner, M. Burkhardt, A. Pesch, O. Sandfuchs, M. Ferstl, S. Hohng, and J. O. White, “Diffraction-based solid immersion lens,” J. Opt. Soc. Am. A21(7), 1186–1191 (2004). [CrossRef] [PubMed]
  7. C. J. R. Sheppard and A. Choudhury, “Annular pupils, radial polarization, and superresolution,” Appl. Opt.43(22), 4322–4327 (2004). [CrossRef] [PubMed]
  8. S. B. Ippolito, B. B. Goldberg, and M. S. Unlu, “Theoretical analysis of numerical aperture increasing lens microscopy,” J. Appl. Phys.97(5), 053105 (2005). [CrossRef]
  9. Y. J. Zhang, “Design of high-performance supersphere solid immersion lenses,” Appl. Opt.45(19), 4540–4546 (2006). [CrossRef] [PubMed]
  10. C. A. Michaels, “Mid-infrared imaging with a solid immersion lens and broadband laser source,” Appl. Phys. Lett.90(12), 121131 (2007). [CrossRef]
  11. E. Ramsay, K. A. Serrels, M. J. Thomson, A. J. Waddie, M. R. Taghizadeh, R. J. Warburton, and D. T. Reid, “Three-dimensional nanoscale subsurface optical imaging of silicon circuits,” Appl. Phys. Lett.90(13), 131101 (2007). [CrossRef]
  12. J. Zhang, C. W. See, and M. G. Somekh, “Imaging performance of widefield solid immersion lens microscopy,” Appl. Opt.46(20), 4202–4208 (2007). [CrossRef] [PubMed]
  13. S. B. Ippolito, P. Song, D. L. Miles, and J. D. Sylvestri, “Angular spectrum tailoring in solid immersion microscopy for circuit analysis,” Appl. Phys. Lett.92(10), 101109 (2008). [CrossRef]
  14. S. H. Goh and C. J. R. Sheppard, “High aperture focusing through a spherical interface: Application to refractive solid immersion lens (RSIL) for subsurface imaging,” Opt. Commun.282(5), 1036–1041 (2009). [CrossRef]
  15. S. H. Goh, C. J. R. Sheppard, A. C. T. Quah, C. M. Chua, L. S. Koh, and J. C. H. Phang, “Design considerations for refractive solid immersion lens: application to subsurface integrated circuit fault localization using laser induced techniques,” Rev. Sci. Instrum.80(1), 013703 (2009). [CrossRef] [PubMed]
  16. Y. J. Yoon, W. C. Kim, N. C. Park, K. S. Park, and Y. P. Park, “Feasibility study of the application of radially polarized illumination to solid immersion lens-based near-field optics,” Opt. Lett.34(13), 1961–1963 (2009). [CrossRef] [PubMed]
  17. D. R. Mason, M. V. Jouravlev, and K. S. Kim, “Enhanced resolution beyond the Abbe diffraction limit with wavelength-scale solid immersion lenses,” Opt. Lett.35(12), 2007–2009 (2010). [CrossRef] [PubMed]
  18. L. Wang, M. C. Pitter, and M. G. Somekh, “Wide-field high-resolution solid immersion fluorescence microscopy applying an aplanatic solid immersion lens,” Appl. Opt.49(31), 6160–6169 (2010). [CrossRef]
  19. K. M. Lim, G. C. F. Lee, C. J. R. Sheppard, J. C. H. Phang, C. L. Wong, and X. D. Chen, “Effect of polarization on a solid immersion lens of arbitrary thickness,” J. Opt. Soc. Am. A28(5), 903–911 (2011). [CrossRef] [PubMed]
  20. S. Y. Yim, J. H. Kim, and J. Lee, “Solid Immersion lens microscope for spectroscopy of nanostructure materials,” J. Opt. Soc. Korea15(1), 78–81 (2011). [CrossRef]
  21. K. A. Serrels, E. Ramsay, R. J. Warburton, and D. T. Reid, “Nanoscale optical microscopy in the vectorial focusing regime,” Nat. Photonics2(5), 311–314 (2008). [CrossRef]
  22. J. Zhang, Y. Kim, S. H. Yang, and T. D. Milster, “Illumination artifacts in hyper-NA vector imaging,” J. Opt. Soc. Am. A27(10), 2272–2284 (2010). [CrossRef] [PubMed]
  23. F. H. Köklü and M. S. Unlü, “Subsurface microscopy of interconnect layers of an integrated circuit,” Opt. Lett.35(2), 184–186 (2010). [CrossRef] [PubMed]
  24. J. X. Cheng and X. S. Xie, “Green's function formulation for third-harmonic generation microscopy,” J. Opt. Soc. Am. B19(7), 1604–1610 (2002). [CrossRef]
  25. J. Frank, S. Altmeyer, and G. Wernicke, “Non-interferometric, non-iterative phase retrieval by Green’s functions,” J. Opt. Soc. Am. A27(10), 2244–2251 (2010). [CrossRef] [PubMed]
  26. H. M. Guo, S. L. Zhuang, J. B. Chen, and Z. C. Liang, “Imaging theory of an aplanatic system with a stratified medium based on the method for a vector coherent transfer function,” Opt. Lett.31(20), 2978–2980 (2006). [CrossRef] [PubMed]
  27. O. Keller, “Attached and radiated electromagnetic fields of an electric point dipole,” J. Opt. Soc. Am. B16(5), 835–847 (1999). [CrossRef]
  28. A. K. Zvezdin and V. I. Belotelov, “Electrodynamic Green-function technique for investigating the magneto-optics of low-dimensional systems and nanostructures,” J. Opt. Soc. Am. B22(1), 228–239 (2005). [CrossRef]
  29. T. Hakkarainen, T. Setälä, and A. T. Friberg, “Subwavelength electromagnetic near-field imaging of point dipole with metamaterial nanoslab,” J. Opt. Soc. Am. A26(10), 2226–2234 (2009). [CrossRef] [PubMed]
  30. P. Martinsson, H. Lajunen, and A. T. Friberg, “Scanning optical near-field resolution analyzed in terms of communication modes,” Opt. Express14(23), 11392–11401 (2006). [CrossRef] [PubMed]
  31. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, Cambridge, 2006).
  32. T. Setälä, M. Kaivola, and A. T. Friberg, “Decomposition of the point-dipole field into homogeneous and evanescent parts,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics59(1), 1200–1206 (1999). [CrossRef]
  33. C. A. Balanis, Antenna Theory: Analysis and Design (Wiley, New York, 2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited