OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 20 — Sep. 26, 2011
  • pp: 19310–19322

Continuous layer gap plasmon resonators

Michael G. Nielsen, Dmitri K. Gramotnev, Anders Pors, Ole Albrektsen, and Sergey I. Bozhevolnyi  »View Author Affiliations

Optics Express, Vol. 19, Issue 20, pp. 19310-19322 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (2752 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate both theoretically and experimentally that a gold nanostrip supported by a thin dielectric (silicon dioxide) film and a gold underlay forms an efficient (Fabry-Perot) resonator for gap surface plasmons. Periodic nanostrip arrays are shown to exhibit strong and narrow resonances with nearly complete absorption and quality factors of ~15-20 in the near-infrared. Two-photon luminescence microscopy measurements reveal intensity enhancement factors of ~120 in the 400-nm-period array of 85-nm-wide gold strips atop a 23-nm-thick silica film at the resonance wavelength of ~770nm. Excellent resonant characteristics, the simplicity of tuning the resonance wavelength by adjusting the nanostrip width and/or the dielectric film thickness and the ease of fabrication with (only) one lithography step required make the considered plasmonic configuration very attractive for a wide variety of applications, ranging from surface sensing to photovoltaics.

© 2011 OSA

OCIS Codes
(040.5350) Detectors : Photovoltaic
(190.0190) Nonlinear optics : Nonlinear optics
(240.6680) Optics at surfaces : Surface plasmons
(260.3910) Physical optics : Metal optics
(300.1030) Spectroscopy : Absorption
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

Original Manuscript: July 26, 2011
Revised Manuscript: August 25, 2011
Manuscript Accepted: September 7, 2011
Published: September 20, 2011

Michael G. Nielsen, Dmitri K. Gramotnev, Anders Pors, Ole Albrektsen, and Sergey I. Bozhevolnyi, "Continuous layer gap plasmon resonators," Opt. Express 19, 19310-19322 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Novotny and B. Hecht, “Principles of Nano-Optics,” Cambridge University Press, Cambridge, (2006).
  2. W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010). [CrossRef] [PubMed]
  3. M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011). [CrossRef]
  4. A. Weber-Bargioni, A. Schwartzberg, M. Schmidt, B. Harteneck, D. F. Ogletree, P. J. Schuck, and S. Cabrini, “Functional plasmonic antenna scanning probes fabricated by induced-deposition mask lithography,” Nanotechnology 21(6), 065306 (2010). [CrossRef] [PubMed]
  5. J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett. 95(1), 017402 (2005). [CrossRef] [PubMed]
  6. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010). [CrossRef] [PubMed]
  7. L. Tang, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2(4), 226–229 (2008). [CrossRef]
  8. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010). [CrossRef] [PubMed]
  9. P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photon. 1(3), 438–483 (2009). [CrossRef]
  10. L. Novotny and N. Van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011). [CrossRef]
  11. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010). [CrossRef]
  12. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009). [CrossRef]
  13. T. Søndergaard and S. I. Bozhevolnyi, “Slow-plasmon resonant nanostructures: Scattering and field enhancements,” Phys. Rev. B 75(7), 073402 (2007). [CrossRef]
  14. S. I. Bozhevolnyi and T. Søndergaard, “General properties of slow-plasmon resonant nanostructures: Nano-antennas and resonators,” Opt. Express 15(17), 10869–10877 (2007). [CrossRef] [PubMed]
  15. T. Søndergaard and S. I. Bozhevolnyi, “Metal nano-strip optical resonators,” Opt. Express 15(7), 4198–4204 (2007). [CrossRef] [PubMed]
  16. T. Søndergaard and S. I. Bozhevolnyi, “Strip and gap plasmon polariton optical resonators,” Phys. Stat. Solidi B 245(1), 9–19 (2008). [CrossRef]
  17. T. Søndergaard, J. Beermann, A. Boltasseva, and S. I. Bozhevolnyi, “Slow-plasmon resonant-nanostrip antennas: Analysis and demonstration,” Phys. Rev. B 77(11), 115420 (2008). [CrossRef]
  18. J. Jung, T. Søndergaard, and S. I. Bozhevolnyi, “Gap plasmon-polariton nanoresonators: Scattering enhancement and launching of surface plasmon polaritons,” Phys. Rev. B 79(3), 035401 (2009). [CrossRef]
  19. J. Jung, T. Søndergaard, J. Beermann, A. Boltasseva, and S. I. Bozhevolnyi, “Theoretical analysis and experimental demonstration of resonant light scattering from metal nanostrips on quartz,” J. Opt. Soc. Am. B 26(1), 121–124 (2009). [CrossRef]
  20. H. T. Miyazaki and Y. Kurokawa, “Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity,” Phys. Rev. Lett. 96(9), 097401 (2006). [CrossRef] [PubMed]
  21. P. Bouchon, F. Pardo, B. Portier, L. Ferlazzo, P. Ghenuche, G. Dagher, C. Dupuis, N. Bardou, R. Haidar, and J.-L. Pelouard, “Total funneling of light in high aspect ratio plasmonic nanoresonators,” Appl. Phys. Lett. 98(19), 191109 (2011). [CrossRef]
  22. T. Søndergaard, J. Jung, S. I. Bozhevolnyi, and G. D. Valle, “Theoretical analysis of gold nanostrip gap plasmon resonators,” N. J. Phys. 10(10), 105008 (2008). [CrossRef]
  23. G. Lerosey, D. F. P. Pile, P. Matheu, G. Bartal, and X. Zhang, “Controlling the phase and amplitude of plasmon sources at a subwavelength scale,” Nano Lett. 9(1), 327–331 (2009). [CrossRef] [PubMed]
  24. G. Lévêque and O. J. F. Martin, “Tunable composite nanoparticle for plasmonics,” Opt. Lett. 31(18), 2750–2752 (2006). [CrossRef] [PubMed]
  25. Y. Chu and K. B. Crozier, “Experimental study of the interaction between localized and propagating surface plasmons,” Opt. Lett. 34(3), 244–246 (2009). [CrossRef] [PubMed]
  26. Y. Chu, M. G. Banaee, and K. B. Crozier, “Double-resonance plasmon substrates for surface-enhanced Raman scattering with enhancement at excitation and stokes frequencies,” ACS Nano 4(5), 2804–2810 (2010). [CrossRef] [PubMed]
  27. R. Ameling, D. Dregely, and H. Giessen, “Strong coupling of localized and surface plasmons to microcavity modes,” Opt. Lett. 36(12), 2218–2220 (2011). [CrossRef] [PubMed]
  28. S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101(10), 104309 (2007). [CrossRef]
  29. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]
  30. J. Jin, “The finite element method in electromagnetics,” Wiley: New York, p 429 (1993).
  31. F. Wang and Y. R. Shen, “General properties of local plasmons in metal nanostructures,” Phys. Rev. Lett. 97(20), 206806 (2006). [CrossRef] [PubMed]
  32. J. Beermann, S. M. Novikov, T. Søndergaard, A. E. Boltasseva, and S. I. Bozhevolnyi, “Two-photon mapping of localized field enhancements in thin nanostrip antennas,” Opt. Express 16(22), 17302–17309 (2008). [CrossRef] [PubMed]
  33. M. G. Nielsen, A. Pors, R. B. Nielsen, A. Boltasseva, O. Albrektsen, and S. I. Bozhevolnyi, “Demonstration of scattering suppression in retardation-based plasmonic nanoantennas,” Opt. Express 18(14), 14802–14811 (2010). [CrossRef] [PubMed]
  34. J. Beermann, I. P. Radko, A. Boltasseva, and S. I. Bozhevolnyi, “Localized field enhancements in fractal shaped periodic metal nanostructures,” Opt. Express 15(23), 15234–15241 (2007). [CrossRef] [PubMed]
  35. J. Beermann, A. Evlyukhin, A. Boltasseva, and S. I. Bozhevolnyi, “Nonlinear microscopy of localized field enhancements in fractal shaped periodic metal nanostructures,” J. Opt. Soc. Am. B 25(10), 1585–1592 (2008). [CrossRef]
  36. J. Beermann, T. Søndergaard, S. M. Novikov, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, “Field enhancement and extraordinary optical transmission by tapered periodic slits in gold films,” N. J. Phys. 13(6), 063029 (2011). [CrossRef]
  37. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited