OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 20 — Sep. 26, 2011
  • pp: 19407–19414

Correcting spherical aberrations induced by an unknown medium through determination of its refractive index and thickness

Daniel Iwaniuk, Pramod Rastogi, and Erwin Hack  »View Author Affiliations


Optics Express, Vol. 19, Issue 20, pp. 19407-19414 (2011)
http://dx.doi.org/10.1364/OE.19.019407


View Full Text Article

Enhanced HTML    Acrobat PDF (1302 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In imaging and focusing applications, spherical aberration induces axial broadening of the point spread function (PSF). A transparent medium between lens and object of interest induces spherical aberration. We propose a method that first obtains both the physical thickness and the refractive index of the aberration inducing medium in situ by measuring the induced focal shifts for paraxial and large angle rays. Then, the fourth order angle dependence of the optical path difference inside the medium is used to correct the spherical aberration using a phase-only spatial light modulator. The obtained measurement accuracy of 3% is sufficient for a complete compensation as demonstrated in a model microscope with NA 0.3 with glass plate induced axial broadening of the PSF by a factor of 5.

© 2011 OSA

OCIS Codes
(120.5060) Instrumentation, measurement, and metrology : Phase modulation
(180.0180) Microscopy : Microscopy
(220.1000) Optical design and fabrication : Aberration compensation
(230.6120) Optical devices : Spatial light modulators
(110.1085) Imaging systems : Adaptive imaging
(110.7348) Imaging systems : Wavefront encoding

ToC Category:
Imaging Systems

History
Original Manuscript: June 10, 2011
Revised Manuscript: August 16, 2011
Manuscript Accepted: September 2, 2011
Published: September 22, 2011

Virtual Issues
Vol. 6, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Daniel Iwaniuk, Pramod Rastogi, and Erwin Hack, "Correcting spherical aberrations induced by an unknown medium through determination of its refractive index and thickness," Opt. Express 19, 19407-19414 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-20-19407


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. J. Stamnes and D. Velauthapillai, “Focal shifts on focusing through a plane interface,” Opt. Commun.282(12), 2286–2291 (2009). [CrossRef]
  2. E. J. Fernández, P. M. Prieto, and P. Artal, “Wave-aberration control with a liquid crystal on silicon (LCOS) spatial phase modulator,” Opt. Express17(13), 11013–11025 (2009). [CrossRef] [PubMed]
  3. S. Labiau, G. David, S. Gigan, and A. C. Boccara, “Defocus test and defocus correction in full-field optical coherence tomography,” Opt. Lett.34(10), 1576–1578 (2009). [CrossRef] [PubMed]
  4. D. Turaga and T. E. Holy, “Miniaturization and defocus correction for objective-coupled planar illumination microscopy,” Opt. Lett.33(20), 2302–2304 (2008). [CrossRef] [PubMed]
  5. P. N. Marsh, D. Burns, and J. M. Girkin, “Practical implementation of adaptive optics in multiphoton microscopy,” Opt. Express11(10), 1123–1130 (2003). [CrossRef] [PubMed]
  6. S. N. S. Reihani and L. B. Oddershede, “Confocal microscopy of thick specimens,” J. Biomed. Opt.14(3), 030513 (2009). [CrossRef] [PubMed]
  7. D. S. Wan, M. Rajadhyaksha, and R. H. Webb, “Analysis of spherical aberration of a water immersion objective: application to specimens with refractive indices 1.33-1.40,” J. Microsc.197(3), 274–284 (2000). [CrossRef] [PubMed]
  8. H. Hemmati and Y. Chen, “Active optical compensation of low-quality optical system aberrations,” Opt. Lett.31(11), 1630–1632 (2006). [CrossRef] [PubMed]
  9. L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, “Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror,” J. Microsc.206(1), 65–71 (2002). [CrossRef] [PubMed]
  10. M. J. Booth, “Wavefront sensorless adaptive optics for large aberrations,” Opt. Lett.32(1), 5–7 (2007). [CrossRef] [PubMed]
  11. N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods7(2), 141–147 (2010). [CrossRef] [PubMed]
  12. P. Kner, J. W. Sedat, D. A. Agard, and Z. Kam, “High-resolution wide-field microscopy with adaptive optics for spherical aberration correction and motionless focusing,” J. Microsc.237(2), 136–147 (2010). [CrossRef] [PubMed]
  13. H. Itoh, N. Matsumoto, and T. Inoue, “Spherical aberration correction suitable for a wavefront controller,” Opt. Express17(16), 14367–14373 (2009). [CrossRef] [PubMed]
  14. J. W. Cha, J. Ballesta, and P. T. C. So, “Shack-Hartmann wavefront-sensor-based adaptive optics system for multiphoton microscopy,” J. Biomed. Opt.15(4), 046022 (2010). [CrossRef] [PubMed]
  15. W. J. Choi, I. Jeon, S. G. Ahn, J. H. Yoon, S. Kim, and B. H. Lee, “Full-field optical coherence microscopy for identifying live cancer cells by quantitative measurement of refractive index distribution,” Opt. Express18(22), 23285–23295 (2010). [CrossRef] [PubMed]
  16. N. Lue, W. Choi, G. Popescu, Z. Yaqoob, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Live cell refractometry using Hilbert phase microscopy and confocal reflectance microscopy,” J. Phys. Chem. A113(47), 13327–13330 (2009). [CrossRef] [PubMed]
  17. B. Kemper, S. Kosmeier, P. Langehanenberg, G. von Bally, I. Bredebusch, W. Domschke, and J. Schnekenburger, “Integral refractive index determination of living suspension cells by multifocus digital holographic phase contrast microscopy,” J. Biomed. Opt.12(5), 054009 (2007). [CrossRef] [PubMed]
  18. N. Lue, G. Popescu, T. Ikeda, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Live cell refractometry using microfluidic devices,” Opt. Lett.31(18), 2759–2761 (2006). [CrossRef] [PubMed]
  19. W. Z. Song, X. M. Zhang, A. Q. Liu, C. S. Lim, P. H. Yap, and H. M. M. Hosseini, “Refractive index measurement of single living cells using on-chip Fabry-Perot cavity,” Appl. Phys. Lett.89(20), 203901 (2006). [CrossRef]
  20. H. Fujiwara, Spectroscopic Ellipsometry Principles and Applications (Wiley, Chichester, 2007).
  21. S. Kim, J. Na, M. J. Kim, and B. H. Lee, “Simultaneous measurement of refractive index and thickness by combining low-coherence interferometry and confocal optics,” Opt. Express16(8), 5516–5526 (2008). [CrossRef] [PubMed]
  22. W. V. Sorin and D. F. Gray, “Simultaneous thickness and group index measurement using optical low-coherence reflectometry,” IEEE Photon. Technol. Lett.4(1), 105–107 (1992). [CrossRef]
  23. K. Lee, S. Y. Ryu, Y. K. Kwak, S. Kim, and Y. W. Lee, “Separation algorithm for a 2D refractive index distribution and thickness profile of a phase object by laser diode-based multiwavelength interferometry,” Rev. Sci. Instrum.80(5), 053114 (2009). [CrossRef] [PubMed]
  24. B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. J. Magistretti, “Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy,” Opt. Express13(23), 9361–9373 (2005). [CrossRef] [PubMed]
  25. D. Iwaniuk, E. Hack, and P. Rastogi, “Generation of a high depth of focus with constant transversal spot size using a phase-only pupil filter,” J. Mod. Opt.57(21), 2141–2146 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited