OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 20 — Sep. 26, 2011
  • pp: 19415–19421

Optical bistability effect in plasmonic racetrack resonator with high extinction ratio

Xiaolei Wang, Houqiang Jiang, Junxue Chen, Pei Wang, Yonghua Lu, and Hai Ming  »View Author Affiliations


Optics Express, Vol. 19, Issue 20, pp. 19415-19421 (2011)
http://dx.doi.org/10.1364/OE.19.019415


View Full Text Article

Enhanced HTML    Acrobat PDF (881 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, optical bistability effect in an ultracompact plasmonic racetrack resonator with nonlinear optical Kerr medium is investigated both analytically and numerically. The properties of optical bistability and pump threshold are studied at 1.55µm with various detuning parameters by an analytical model. The transmission switch from the upper branch to the lower branch with a pulse is also demonstrated by a finite-difference time-domain method. An extinction ratio of 97.8% and a switching time of 0.38ps can be achieved with proper detuning parameter. Such a plasmonic resonator design provides a promising realization for highly effective optical modulators and switch.

© 2011 OSA

OCIS Codes
(190.4360) Nonlinear optics : Nonlinear optics, devices
(230.5750) Optical devices : Resonators
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Integrated Optics

History
Original Manuscript: June 14, 2011
Revised Manuscript: August 13, 2011
Manuscript Accepted: August 14, 2011
Published: September 22, 2011

Citation
Xiaolei Wang, Houqiang Jiang, Junxue Chen, Pei Wang, Yonghua Lu, and Hai Ming, "Optical bistability effect in plasmonic racetrack resonator with high extinction ratio," Opt. Express 19, 19415-19421 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-20-19415


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature431(7012), 1081–1084 (2004). [CrossRef] [PubMed]
  2. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature440(7083), 508–511 (2006). [CrossRef] [PubMed]
  3. S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys.98(1), 011101 (2005). [CrossRef]
  4. R. Zia, J. Schuller, A. Chandran, and M. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today9(7–8), 20–27 (2006). [CrossRef]
  5. A. Hryciw, Y. C. Jun, and M. L. Brongersma, “Plasmonics: Electrifying plasmonics on silicon,” Nat. Mater.9(1), 3–4 (2010). [CrossRef] [PubMed]
  6. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science311(5758), 189–193 (2006). [CrossRef] [PubMed]
  7. M. Kuttge, F. J. García de Abajo, and A. Polman, “Ultrasmall mode volume plasmonic nanodisk resonators,” Nano Lett.10(5), 1537–1541 (2010). [CrossRef] [PubMed]
  8. H. T. Miyazaki and Y. Kurokawa, “Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity,” Phys. Rev. Lett.96(9), 097401 (2006). [CrossRef] [PubMed]
  9. S. S. Xiao, L. Liu, and M. Qiu, “Resonator channel drop filters in a plasmon-polaritons metal,” Opt. Express14(7), 2932–2937 (2006). [CrossRef] [PubMed]
  10. S. A. Maier, “Plasmonic field enhancement and SERS in the effective mode volume picture,” Opt. Express14(5), 1957–1964 (2006). [CrossRef] [PubMed]
  11. A. Hosseini and Y. Massoud, “Nanoscale surface plasmon based resonator using rectangular geometry,” Appl. Phys. Lett.90(18), 181102 (2007). [CrossRef]
  12. Z. Han, V. Van, W. N. Herman, and P. T. Ho, “Aperture-coupled MIM plasmonic ring resonators with sub-diffraction modal volumes,” Opt. Express17(15), 12678–12684 (2009). [CrossRef] [PubMed]
  13. S. A. Maier, “Effective Mode Volume of Nanoscale Plasmon Cavities,” Opt. Quantum Electron.38(1-3), 257–267 (2006). [CrossRef]
  14. S.-H. Kwon, J.-H. Kang, C. Seassal, S.-K. Kim, P. Regreny, Y.-H. Lee, C. M. Lieber, and H.-G. Park, “Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity,” Nano Lett.10(9), 3679–3683 (2010). [CrossRef] [PubMed]
  15. T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, and A. Dereux, “Dielectric-loaded plasmonic waveguide-ring resonators,” Opt. Express17(4), 2968–2975 (2009). [CrossRef] [PubMed]
  16. B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature457(7228), 455–458 (2009). [CrossRef] [PubMed]
  17. B. Wang and G. P. Wang, “Plasmonic waveguide ring resonator at terahertz frequencies,” Appl. Phys. Lett.89(13), 133106 (2006). [CrossRef]
  18. H. Lu, X. M. Liu, L. R. Wang, Y. K. Gong, and D. Mao, “Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator,” Opt. Express19(4), 2910–2915 (2011). [CrossRef] [PubMed]
  19. X. S. Lin, J. H. Yan, Y. B. Zheng, L. J. Wu, and S. Lan, “Bistable switching in the lossy side-coupled plasmonic waveguide-cavity structures,” Opt. Express19(10), 9594–9599 (2011). [CrossRef] [PubMed]
  20. X. Wang, P. Wang, C. Chen, J. Chen, Y. Lu, H. Ming, and Q. Zhan, “Plasmonic racetrack resonator with high extinction ratio under critical coupling condition,” J. Appl. Phys.107(12), 124517 (2010). [CrossRef]
  21. A. V. Krasavin, K. F. MacDonald, N. I. Zheludev, and A. V. Zayats, “High-contrast modulation of light with light by control of surface plasmon polariton wave coupling,” Appl. Phys. Lett.85(16), 3369–3371 (2004). [CrossRef]
  22. S. W. Liu and M. Xiao, “Electro-optic switch in ferroelectric thin films mediated by surface plasmons,” Appl. Phys. Lett.88(14), 143512 (2006). [CrossRef]
  23. H. A. Haus and Y. Lai, “Theory of Cascaded Quarter Wave Shifted Distributed Feedback Resonators,” IEEE J. Quantum Electron.28(1), 205–213 (1992). [CrossRef]
  24. M. Soljačić, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.66(5), 055601 (2002). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited