OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 20 — Sep. 26, 2011
  • pp: 19422–19429

Optical properties of photonic molecules and elliptical pillars made of ZnSe-based microcavities

K. Sebald, M. Seyfried, S. Klembt, and C. Kruse  »View Author Affiliations


Optics Express, Vol. 19, Issue 20, pp. 19422-19429 (2011)
http://dx.doi.org/10.1364/OE.19.019422


View Full Text Article

Acrobat PDF (1465 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The influence of the geometric shape of optically confining structures on the emission properties of ZnSe-based microcavities is studied. Elliptical as well as coupled circular structures were fabricated with quantum wells or quantum dots as optical active material. For the elliptical pillars a lifting of the polarization degeneracy of the resonator modes is observed as it is favorable to control the polarization state of the emitted photons. The influence of the ellipticity on the polarization splitting of the fundamental mode as well as on the quality factor of the sample is discussed. For the coupled pillar microcavities the effect of their distance on the energy splitting of the fundamental resonator mode is analyzed. Furthermore, detailed measurements of the spatial mode distribution in elliptically shaped pillars and photonic molecules are performed. By comparing these results to the calculated mode distribution their analogy to a diatomic molecule is illustrated. It turns out that the observed mode splitting into localized bonding and delocalized antibonding states in ZnSe-based microcavities is more pronounced for elliptical geometries. The realization of delocalized mode profiles is favorable for the coupling of spatially separated quantum dots.

© 2011 OSA

OCIS Codes
(220.4000) Optical design and fabrication : Microstructure fabrication
(230.1480) Optical devices : Bragg reflectors
(140.3945) Lasers and laser optics : Microcavities
(230.4555) Optical devices : Coupled resonators

ToC Category:
Optical Devices

History
Original Manuscript: June 29, 2011
Revised Manuscript: August 20, 2011
Manuscript Accepted: August 22, 2011
Published: September 22, 2011

Citation
K. Sebald, M. Seyfried, S. Klembt, and C. Kruse, "Optical properties of photonic molecules and elliptical pillars made of ZnSe-based microcavities," Opt. Express 19, 19422-19429 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-20-19422


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. K. J. Vahala, “Optical microcavities,” Nature424, 839–846 (2003). [CrossRef] [PubMed]
  2. J. Gérard, “Solid-state cavity-quantum electrodynamics with self-assembled quantum dots,” in Single Quantum Dots, P. Michler, ed. (Springer, 2003), p. 269.
  3. E. Moreau, I. Robert, J. M. Gérard, I. Abram, L. Manin, and V. Thierry-Mieg, “Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities,” Appl. Phys. Lett.79, 2865–2867 (2001). [CrossRef]
  4. M. Pelton, C. Santori, J. Vuc̆ković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett.89, 233602 (2002). [CrossRef] [PubMed]
  5. B. Gayral, J. M. Gérard, B. Legrand, E. Costard, and V. Thierry-Mieg, “Optical study of GaAs/AlAs pillar microcavities with elliptical cross section,” Appl. Phys. Lett.72, 1421–1423, (1998). [CrossRef]
  6. A. Daraei, A. Tahraoui, D. Sanvitto, J. A. Timpson, P. W. Fry, M. Hopkinson, P. S. S. Guimaraes, H. Vinck, D. M. Whittaker, M. S. Skolnick, and A. M. Fox, “Control of polarized single quantum dot emission in high-quality-factor microcavity pillars,” Appl. Phys. Lett.88, 051113 (2006). [CrossRef]
  7. S. Ates, S. M. Ulrich, P. Michler, S. Reitzenstein, A. Löffler, and A. Forchel, “Coherence properties of high-beta elliptical semiconductor micropillar lasers,” Appl. Phys. Lett.90, 161111 (2007). [CrossRef]
  8. D. Whittaker, P. Guimaraes, D. Sanvitto, H. Vinck, S. Lam, A. Darai, Y.-L. D. Ho, J. Rarity, M. Hopkinson, and A. Tahraoui, “High Q modes in elliptical microcavity pillars,” App. Phys. Lett.90, 161105 (2007). [CrossRef]
  9. M. Bayer, T. Gutbrod, J. P. Reithmaier, A. Forchel, T. L. Reinecke, P. A. Knipp, A. A. Dremin, and V. D. Kulakovskii, “Optical modes in photonic molecules,” Phys. Rev. Lett.81, 2582–2585 (1998). [CrossRef]
  10. A. Dousse, J. Suffczynski, A. Beveratos, O. Krebs, A. Lemaitre, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Ultrabright source of entangled photon pairs,” Nature466, 217–220 (2010). [CrossRef] [PubMed]
  11. M. Benyoucef, S. Kiravittaya, Y. F. Mei, A. Rastelli, and O. G. Schmidt, “Strongly coupled semiconductor microcavities: A route to couple artificial atoms over micrometric distances,” Phys. Rev. B77, 035108 (2008). [CrossRef]
  12. K. A. Atlasov, K. F. Karlsson, A. Rudra, B. Dwir, and E. Kapon, “Wavelength and loss splitting in directly coupled photonic-crystal defect microcavities,” Opt. Express16, 16255–16264 (2008). [CrossRef] [PubMed]
  13. S. Vignolini, F. Intonti, M. Zani, F. Riboli, D. S. Wiersma, L. H. Li, L. Balet, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Near-field imaging of coupled photonic-crystal microcavities,” Appl. Phys. Lett.94, 151103 (2009). [CrossRef]
  14. V. Zhuk, D. Regelman, D. Gershoni, M. Bayer, J. Reithmaier, A. Forchel, P. Knipp, and T. Reinecke, “Near-field mapping of the electromagnetic field in confined photon geometries,” Phys. Rev. B66, 115302 (2002). [CrossRef]
  15. M. Karl, S. Li, T. Passow, W. Löffler, H. Kalt, and M. Hetterich, “Localized and delocalized modes in coupled optical micropillar cavities,” Opt. Express15, 8191–8196 (2007). [CrossRef] [PubMed]
  16. K. Sebald, P. Michler, T. Passow, D. Hommel, G. Bacher, and A. Forchel, “Single-photon emission of CdSe quantum dots at temperatures up to 200 K,” Appl. Phys. Lett.81, 2920–2922 (2002). [CrossRef]
  17. R. Arians, T. Kümmel, G. Bacher, A. Gust, C. Kruse, and D. Hommel, “Room temperature emission from CdSe/ZnSSe/MgS single quantum dots,” Appl. Phys. Lett.90, 101114 (2007). [CrossRef]
  18. C. Kruse, H. Lohmeyer, K. Sebald, J. Gutowski, D. Hommel, J. Wiersig, and F. Jahnke, “Green laser emission from monolithic II–VI-based pillar microcavities near room temperature,” Appl. Phys. Lett.92, 031101 (2008). [CrossRef]
  19. I. C. Robin, R. André, A. Balocchi, S. Carayon, S. Moehl, J. M. Gérard, and L. Ferlazzo, “Purcell effect for CdSe/ZnSe quantum dots placed into hybrid micropillars,” Appl. Phys. Lett.87, 233114 (2005). [CrossRef]
  20. J. Renner, L. Worschech, A. Forchel, S. Mahapatra, and K. Brunner, “CdSe quantum dot microdisk laser,” Appl. Phys. Lett.89, 231104 (2006). [CrossRef]
  21. A. Gust, C. Kruse, and D. Hommel, “Investigation of CdSe quantum dots in MgS barriers as active region in light emitting diodes,” J. Crys. Growth301–302, 789–792 (2007). [CrossRef]
  22. C. Kruse, S. M. Ulrich, G. Alexe, E. Roventa, R. Kröger, B. Brendemühl, P. Michler, J. Gutowski, and D. Hommel, “Green monolithic IIVI vertical-cavity surface-emitting laser operating at room temperature,” Phys. Status Solidi B241, 731–738 (2004). [CrossRef]
  23. H. Lohmeyer, K. Sebald, C. Kruse, R. Kröger, J. Gutowski, D. Hommel, J. Wiersig, N. Baer, and F. Jahnke, “Confined optical modes in monolithic II–VI pillar microcavities,” Appl. Phys. Lett.88, 051101 (2006). [CrossRef]
  24. H. Lohmeyer, C. Kruse, K. Sebald, J. Gutowski, and D. Hommel, “Enhanced spontaneous emission of CdSe quantum dots in monolithic II–VI pillar microcavities,” Appl. Phys. Lett.89, 091107 (2006). [CrossRef]
  25. S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauss, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett.90, 251109 (2007). [CrossRef]
  26. M. Seyfried, J. Kalden, K. Sebald, C. Kruse, S. Figge, A. Gust, C. Tessarek, H. Dartsch, D. Hommel, M. Florian, F. Jahnke, and J. Gutowski, “Optical properties of wide-bandgap monolithic pillar microcavities with different geometries,” Phys. Status Solidi C8, 1246–1249 (2011). [CrossRef]
  27. T. Rivera, J.-P. Debray, J. M. Gérard, B. Legrand, L. Manin-Ferlazzo, and J. L. Oudar, “Optical losses in plasma-etched AlGaAs microresonators using reflection spectroscopy,” Appl. Phys. Lett.74, 911–913 (1999). [CrossRef]
  28. S. Johnson and J. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express8, 173–190, (2001). [CrossRef] [PubMed]
  29. A. Daraei, D. Sanvitto, J. A. Timpson, A. M. Fox, D. M. Whittaker, M. S. Skolnick, P. S. S. Guimarães, H. Vinck, A. Tahraoui, P. W. Fry, S. L. Liew, and M. Hopkinson, “Control of polarization and mode mapping of small volume high Q micropillars,” J. Appl. Phys.102, 043105 (2007). [CrossRef]
  30. K. Sebald, C. Kruse, and J. Wiersig, “Properties and prospects of bluegreen emitting IIVI-based monolithic microcavities,” Phys. Status Solidi B246, 255–271 (2009). [CrossRef]
  31. S. Vignolini, F. Intonti, M. Zani, F. Riboli, D. S. Wiersma, L. H. Li, L. Balet, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Near-field imaging of coupled photonic-crystal microcavities,” Appl. Phys. Lett.94, 151103 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited