OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 20 — Sep. 26, 2011
  • pp: 19430–19439

Valley in the efficiency of the high-order harmonic yield at ultra-high laser intensities

J. A. Pérez-Hernández, L. Roso, A. Zaïr, and L. Plaja  »View Author Affiliations


Optics Express, Vol. 19, Issue 20, pp. 19430-19439 (2011)
http://dx.doi.org/10.1364/OE.19.019430


View Full Text Article

Enhanced HTML    Acrobat PDF (357 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We study the process of high-order harmonic generation using laser pulses with non-adiabatic turn-on and intensities well above saturation. As a main point, we report the existence of a valley structure in the efficiency of single-atom high-order harmonic generation with increasing laser intensities. Consequently, after an initial decrease, the high-frequency radiation yield is shown to increase for higher intensities, returning to a level similar to the case below saturation. Such behavior contradicts the general belief of a progressive degradation of the harmonic emission at ultrahigh intensities, based on the experience with pulses with smoother turn-on. We shall show that this behavior corresponds to the emergence of a new pathway for high-order harmonic generation, which takes place during the pulse turn-on. Our study combines trajectory analysis, wavelet techniques and the numerical integration of 3-Dimensional Time Dependent Schrödinger Equation. The increase in efficiency raises the possibility of employing ultrahigh intensities to generate high-frequency radiation beyond the water window.

© 2011 OSA

OCIS Codes
(020.4180) Atomic and molecular physics : Multiphoton processes
(190.2640) Nonlinear optics : Stimulated scattering, modulation, etc.
(190.4180) Nonlinear optics : Multiphoton processes
(320.2250) Ultrafast optics : Femtosecond phenomena
(320.5540) Ultrafast optics : Pulse shaping
(320.7110) Ultrafast optics : Ultrafast nonlinear optics
(340.7480) X-ray optics : X-rays, soft x-rays, extreme ultraviolet (EUV)
(020.2649) Atomic and molecular physics : Strong field laser physics

ToC Category:
Atomic and Molecular Physics

History
Original Manuscript: June 28, 2011
Revised Manuscript: July 28, 2011
Manuscript Accepted: July 28, 2011
Published: September 22, 2011

Citation
J. A. Pérez-Hernández, L. Roso, A. Zaïr, and L. Plaja, "Valley in the efficiency of the high-order harmonic yield at ultra-high laser intensities," Opt. Express 19, 19430-19439 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-20-19430


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Ferray, A. L’Huillier, X. F. Li, L. A. Lompre, G. Mainfray, and C. Manus, “Multiple-harmonic conversion of 1064 nm radiation in rare gases,” J. Phys. B, At. Mol. Opt. Phys. 21, L31–L35 (1998). [CrossRef]
  2. J. L. Krause, K. J. Schafer, and K. C. Kulander, “High-order harmonic generation from atoms and ions in the high intensity regime,” Phys. Rev. Lett. 68, 3535–3538 (1992). [CrossRef] [PubMed]
  3. C. Spielmann, N. H. Burnett, S. Sartania, R. Koppitsch, M. Schnrer, C. Kan, M. Lenzner, P. Wobrauschek, and F. Krausz, “Generation of coherent X-rays in the water window using 5-femtosecond laser pulses,” Science 278, 661–664 (1997). [CrossRef]
  4. Z. Chang, A. Rundquist, H. Wang, M. M. Murnane, and H. C. Kapteyn, “Generation of coherent soft X rays at 2.7 nm using high harmonics,” Phys. Rev. Lett. 79, 2967–2970 (1997). [CrossRef]
  5. J. Seres, E. Seres, A. J. Verhoef, G. Tempea, C. Streli, P. Wobrauschek, V. Yakovlev, A. Scrinzi, C. Spielmann, and F. Krausz, “Laser technology: source of coherent kiloelectronvolt X-rays,” Nature 433, 596 (2005). [CrossRef] [PubMed]
  6. K. Schafer, B. Yang, L. F. DiMauro, and K. C. Kulander, “Above threshold ionization beyond the high harmonic cutoff,” Phys. Rev. Lett. 70, 1599–1602 (1993). [CrossRef] [PubMed]
  7. P. B. Corkum, “Plasma perspective on strong-field multiphoton ionization,” Phys. Rev. Lett. 71, 1994–1997 (1993). [CrossRef] [PubMed]
  8. J. Tate, T. Auguste, H. G. Muller, P. Salières, P. Agostini, and L. F. DiMauro, “Scaling of wave-packet dynamics in an intense midinfrared field,” Phys. Rev. Lett. 98, 013901 (2007). [CrossRef] [PubMed]
  9. J. A. Pérez-Hernández, L. Roso, and L. Plaja, “Harmonic generation beyond the strong-field approximation: the physics behind the short-wave-infrared scaling laws,” Opt. Express 17, 9891–9903 (2009). [CrossRef] [PubMed]
  10. J. A. Pérez-Hernández, J. Ramos, L. Roso, and L. Plaja, “Harmonic generation beyond the strong-field approximation: phase and temporal description,” Laser Phys. 20, 1044–1050 (2010). [CrossRef]
  11. T. Popmintchev, M. C. Chen, O. Cohen, M. E. Grisham, J. J. Rocca, M. M. Murnane, and H. C. Kapteyn, “Extended phase matching of high harmonics driven by mid-infrared light,” Opt. Lett. 33, 2128–2130 (2008). [CrossRef] [PubMed]
  12. P. Moreno, L. Plaja, V. Malyshev, and L. Roso, “Influence of barrier suppression in high-order harmonic generation,” Phys. Rev. A 51, 4746–4753 (1995). [CrossRef] [PubMed]
  13. V. V. Strelkov, A. F. Sterjantov, N. Yu Shubin, and V. T. Platonenko, “XUV generation with several-cycle laser pulse in barrier-suppression regime,” J. Phys. B, At. Mol. Opt. Phys. 39, 577–589 (2006). [CrossRef]
  14. H. Xiong, H. Xu, Y. Fu, J. Yao, B. Zeng, W. Chu, Y. Cheng, Z. Xu, E. J. Takahashi, K. Midorikawa, X. Liu, and J. Chen, “Generation of a coherent x ray in the water window region at 1 kHz repetition rate using a mid-infrared pump source,” Opt. Lett. 34, 1747–1749 (2009). [CrossRef] [PubMed]
  15. P. Arpin, T. Popmintchev, N. L. Wagner, A. L. Lytle, O. Cohen, H. C. Kapteyn, and M. M. Murnane, “Enhanced high harmonic generation from multiply ionized argon above 500 eV through laser pulse self-compression,” Phy. Rev. Lett. 103, 143901 (2009). [CrossRef]
  16. F. Ferrari, F. Calegari, M. Lucchini, C. Vozzi, S. Stagira, G. Sansone, and M. Nisoli, “High-energy isolated attosecond pulses generated by above-saturation few-cycle fields,” Nat. Photonics 4, 875–879 (2010). [CrossRef]
  17. K. T. Kim, C. M. Kim, M. G. Baik, G. Umesh, and C. H. Nam, “Single sub-50-attosecond pulse generation from chirp-compensated harmonic radiation using material dispersion,” Phys. Rev. A 69, 051805 (2004). [CrossRef]
  18. T. Sekikawa, A. Kosuge, T. Kanai, and S. Watanabe, “Nonlinear optics in the extreme ultraviolet,” Nature 432, 605–608 (2004). [CrossRef] [PubMed]
  19. M. Schnürer, Ch. Spielmann, P. Wobrauschek, C. Streli, N. H. Burnett, C. Kan, K. Ferencz, R. Koppitsch, Z. Cheng, T. Brabec, and F. Krausz, “Coherent 0.5-keV X-ray emission from helium driven by a sub-10-fs laser,” Phys. Rev. Lett. 80, 3236–3239 (1998). [CrossRef]
  20. M. Geissler, G. Tempea, and T. Brabec, “Phase-matched high-order harmonic generation in the nonadiabatic limit,” Phys. Rev. A 62, 033817 (2000). [CrossRef]
  21. J. Wu, H. Cai, A. Couairon, and H. Zeng, “Few-cycle shock X-wave generation by filamentation in prealigned molecules,” Phys. Rev. A 80, 013828 (2009). [CrossRef]
  22. J. Wu, H. Cai, Y. Peng, and H. Zeng, “Controllable supercontinuum generation by the quantum wake of molecular alignment,” Phys. Rev. A 79, 041404 (2009). [CrossRef]
  23. H. Cai, J. Wu, Y. Peng, and H. Zeng, “Comparison study of supercontinuum generationby molecular alignment of N2 and O2,” Opt. Express 17, 5822–5828 (2009). [PubMed]
  24. H. Cai, J. Wu, X. Bai, H. Pan, and H Zeng, “Molecular-alignment-assisted high-energy supercontinuum pulse generation in air,” Opt. Lett. 35, 49–51 (2010). [CrossRef] [PubMed]
  25. J. Vazquez de Aldana and L. Roso, “Magnetic-field effect in atomic ionization by intense laser fields,” Opt. Express 5, 144–148 (1999). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 3 Fig. 2
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited