OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 20 — Sep. 26, 2011
  • pp: 19454–19472

Data compressive paradigm for multispectral sensing using tunable DWELL mid-infrared detectors

Woo-Yong Jang, Majeed M. Hayat, Sebastián E. Godoy, Steven C. Bender, Payman Zarkesh-Ha, and Sanjay Krishna  »View Author Affiliations

Optics Express, Vol. 19, Issue 20, pp. 19454-19472 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1840 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



While quantum dots-in-a-well (DWELL) infrared photodetectors have the feature that their spectral responses can be shifted continuously by varying the applied bias, the width of the spectral response at any applied bias is not sufficiently narrow for use in multispectral sensing without the aid of spectral filters. To achieve higher spectral resolutions without using physical spectral filters, algorithms have been developed for post-processing the DWELL’s bias-dependent photocurrents resulting from probing an object of interest repeatedly over a wide range of applied biases. At the heart of these algorithms is the ability to approximate an arbitrary spectral filter, which we desire the DWELL-algorithm combination to mimic, by forming a weighted superposition of the DWELL’s non-orthogonal spectral responses over a range of applied biases. However, these algorithms assume availability of abundant DWELL data over a large number of applied biases (>30), leading to large overall acquisition times in proportion with the number of biases. This paper reports a new multispectral sensing algorithm to substantially compress the number of necessary bias values subject to a prescribed performance level across multiple sensing applications. The algorithm identifies a minimal set of biases to be used in sensing only the relevant spectral information for remote-sensing applications of interest. Experimental results on target spectrometry and classification demonstrate a reduction in the number of required biases by a factor of 7 (e.g., from 30 to 4). The tradeoff between performance and bias compression is thoroughly investigated.

© 2011 OSA

OCIS Codes
(040.3060) Detectors : Infrared
(040.5160) Detectors : Photodetectors
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors
(150.1135) Machine vision : Algorithms

ToC Category:

Original Manuscript: July 1, 2011
Revised Manuscript: August 27, 2011
Manuscript Accepted: August 28, 2011
Published: September 22, 2011

Woo-Yong Jang, Majeed M. Hayat, Sebastián E. Godoy, Steven C. Bender, Payman Zarkesh-Ha, and Sanjay Krishna, "Data compressive paradigm for multispectral sensing using tunable DWELL mid-infrared detectors," Opt. Express 19, 19454-19472 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. Streibl, U. Nölscher, J. Jahns, and S. Walker, “Array generation with lenslet arrays,” Appl. Opt.30(19), 2739–2742 (1991). [CrossRef] [PubMed]
  2. C. A. Musca, J. Antoszewski, K. J. Winchester, A. J. Keating, T. Nguyen, K. K. M. B. D. Silva, J. M. Dell, L. Faraone, P. Mitra, J. D. Beck, M. R. Skokan, and J. E. Robinson, “Monolithic integration of an infrared photon detector with a MEMS-based tunable filter,” IEEE Electron Dev. Lett.26(12), 888–890 (2005). [CrossRef]
  3. N. Gupta, R. Dahmani, and S. Choy, “Acousto-optic tunable filter based visible- to near-infrared spectropolarimetric imager,” Opt. Eng.41(5), 1033–1038 (2002). [CrossRef]
  4. D. Tezcan, S. Eminoglu, and T. Akin, “A Low-Cost Uncooled Infrared Microbolometer Detector in Standard CMOS Technology,” IEEE Trans. Electron. Dev.50(2), 494–502 (2003). [CrossRef]
  5. B. F. Levine, “Quantum-well infrared photodetectors,” J. Appl. Phys.74(8), R1–R81 (1993). [CrossRef]
  6. K. W. Berryman, S. A. Lyon, and M. Segev, “Mid-infrared photoconductivity in InAs quantum dots,” Appl. Phys. Lett.70(14), 1861 (1997). [CrossRef]
  7. J. C. Campbell and A. Madhukar, “Quantum-dot infrared photodetectors,” Proc. IEEE95(9), 1815–1827 (2007). [CrossRef]
  8. S. Krishna, “Quantum dots-in-a-well infrared photodetectors,” J. Phys. D Appl. Phys.38(13), 2142–2150 (2005). [CrossRef]
  9. S. Krishna, S. Raghavan, G. von Winckel, A. Stintz, G. Ariyawansa, S. G. Matsik, and A. G. U. Perera, “Three-color (λp1~3.8μm, λp2~8.5μm, λp3~23.2μm) InAs/InGaAs quantum-dots-in-a-well detector,” Appl. Phys. Lett.83(14), 2745–2747 (2003). [CrossRef]
  10. D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge electroabsorption in quantum well structures: The quantum-confined stark effect,” Phys. Rev. Lett.53(22), 2173–2176 (1984). [CrossRef]
  11. S. Krishna, M. M. Hayat, J. S. Tyo, S. Raghvan, and Ü. Sakoğlu, “Detector with tunable spectral response,” U.S. Patent 7 217 951, 2007.
  12. Ü. Sakoğlu, J. S. Tyo, M. M. Hayat, S. Raghavan, and S. Krishna, “Spectrally adaptive infrared photodetectors with bias-tunable quantum dots,” J. Opt. Soc. Am. B21(1), 7–17 (2004). [CrossRef]
  13. Ü. Sakoğlu, M. M. Hayat, J. S. Tyo, P. Dowd, S. Annamalai, K. T. Posani, and S. Krishna, “Statistical adaptive sensing by detectors with spectrally overlapping bands,” Appl. Opt.45(28), 7224–7234 (2006). [CrossRef] [PubMed]
  14. W.-Y. Jang, M. M. Hayat, J. S. Tyo, R. S. Attaluri, T. E. Vandervelde, Y. D. Sharma, R. Shenoi, A. Stintz, E. R. Cantwell, S. C. Bender, S. J. Lee, S. K. Noh, and S. Krishna, “Demonstration of bias controlled algorithmic tuning of quantum dots in a well (DWELL) MidIR detectors,” IEEE J. Quantum Electron.45(6), 674–683 (2009). [CrossRef]
  15. W.-Y. Jang, B. Paskaleva, M. M. Hayat, and S. Krishna, “Spectrally adaptive nanoscale quantum dot sensors,” Wiley Handbook of Science and Technology for Homeland Security (Wiley, 2009).
  16. P. Vines, C. H. Tan, J. P. R. David, R. S. Attaluri, T. E. Vandervelde, S. Krishna, W.-Y. Jang, and M. M. Hayat, “Versatile spectral imaging with an algorithm-based spectrometer using highly tuneable quantum dot infrared photodetectors,” IEEE J. Quantum Electron.47(2), 190–197 (2011). [CrossRef]
  17. B. Paskaleva, M. M. Hayat, Z. Wang, J. S. Tyo, and S. Krishna, “Canonical correlation feature selection for sensors with overlapping bands: theory and application,” IEEE Trans. Geosci. Rem. Sens.46(10), 3346–3358 (2008). [CrossRef]
  18. B. S. Paskaleva, W.-Y. Jang, S. C. Bender, Y. D. Sharma, S. Krishna, and M. M. Hayat, “Multispectral classification with bias-tunable quantum dots-in-a-well focal plane arrays,” IEEE Sens. J.11(6), 1342–1351 (2011). [CrossRef]
  19. S. F. Cotter, B. D. Rao, Kjersti Engan, and K. Kreutz-Delgado, “Sparse Solutions to Linear Inverse Problems With Multiple Measurement Vectors,” IEEE Trans. Signal Process.53(7), 2477–2488 (2005). [CrossRef]
  20. G. Davis, S. Mallat, and M. Avellandeda, “Adaptive greedy approximations,” Constr. Approx.13(1), 57–98 (1997).
  21. A. Majumdar, K. K. Choi, J. L. Reno, L. P. Rokhinson, and D. C. Tsui, “Two-color quantum-well infrared photodetector with voltage tunable peaks,” Appl. Phys. Lett.80(5), 707–709 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited