OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 20 — Sep. 26, 2011
  • pp: 19508–19513

Harmonics rejection in pixelated interferograms using spatio-temporal demodulation

J. M. Padilla, M. Servin, and J. C. Estrada  »View Author Affiliations

Optics Express, Vol. 19, Issue 20, pp. 19508-19513 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (2277 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Pixelated phase-mask interferograms have become an industry standard in spatial phase-shifting interferometry. These pixelated interferograms allow full wavefront encoding using a single interferogram. This allows the study of fast dynamic events in hostile mechanical environments. Recently an error-free demodulation method for ideal pixelated interferograms was proposed. However, non-ideal conditions in interferometry may arise due to non-linear response of the CCD camera, multiple light paths in the interferometer, etc. These conditions generate non-sinusoidal fringes containing harmonics which degrade the phase estimation. Here we show that two-dimensional Fourier demodulation of pixelated interferograms rejects most harmonics except the complex ones at {-3rd, +5th, −7th, +9th, −11th,…}. We propose temporal phase-shifting to remove these remaining harmonics. In particular, a 2-step phase-shifting algorithm is used to eliminate the −3rd and +5th complex harmonics, while a 3-step one is used to remove the −3rd, +5th, −7th and +9th complex harmonics.

© 2011 OSA

OCIS Codes
(120.2650) Instrumentation, measurement, and metrology : Fringe analysis
(120.3180) Instrumentation, measurement, and metrology : Interferometry

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: July 13, 2011
Revised Manuscript: August 12, 2011
Manuscript Accepted: August 15, 2011
Published: September 22, 2011

J. M. Padilla, M. Servin, and J. C. Estrada, "Harmonics rejection in pixelated interferograms using spatio-temporal demodulation," Opt. Express 19, 19508-19513 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Servin, J. C. Estrada, and J. A. Quiroga, “The general theory of phase shifting algorithms,” Opt. Express 17(24), 21867–21881 (2009). [CrossRef] [PubMed]
  2. R. Smythe and R. Moore, “Instantaneous phase measuring interferometry,” Opt. Eng. 23, 361–364 (1984).
  3. O. Y. Kwon, “Multichannel phase-shifted interferometer,” Opt. Lett. 9(2), 59–61 (1984). [CrossRef] [PubMed]
  4. C. L. Koliopoulos, “Simultaneous phase-shift interferometer,” Proc. SPIE 1531, 119–127 (1992). [CrossRef]
  5. B. K. A. Ngoi, K. Venkatakrishnan, and N. R. Sivakumar, “Phase-shifting interferometry immune to vibration,” Appl. Opt. 40(19), 3211–3214 (2001). [CrossRef] [PubMed]
  6. J. Millerd, N. Brock, J. Hayes, M. North-Morris, M. Novak, and J. C. Wyant, “Pixelated phase-mask dynamic interferometer,” Proc. SPIE 5531, 304–314 (2004). [CrossRef]
  7. M. Servin and J. C. Estrada, “Error-free demodulation of pixelated carrier frequency interferograms,” Opt. Express 18(17), 18492–18497 (2010). [CrossRef] [PubMed]
  8. B. Kimbrough and J. Millerd, “The spatial frequency response and resolution limitations of pixelated mask spatial carrier based phase shifting interferometry,” Proc. SPIE 7790, 1–12 (2010).
  9. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. A 72(1), 156–160 (1982). [CrossRef]
  10. Y. Surrel, “Design of algorithms for phase measurements by the use of phase stepping,” Appl. Opt. 35(1), 51–60 (1996). [CrossRef] [PubMed]
  11. A. Gonzalez, M. Servin, J. C. Estrada, and J. A. Quiroga, “Design of phase-shifting algorithms by fine-tuning spectral shaping,” Opt. Express 19(11), 10692–10697 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited