OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 20 — Sep. 26, 2011
  • pp: 19514–19522

Ultrafast all-optical temporal differentiators based on CMOS-compatible integrated-waveguide Bragg gratings

K.A. Rutkowska, D. Duchesne, M.J. Strain, R. Morandotti, M. Sorel, and J. Azaña  »View Author Affiliations

Optics Express, Vol. 19, Issue 20, pp. 19514-19522 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1372 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the first realization of integrated, all-optical first- and higher-order photonic differentiators operating at terahertz (THz) processing speeds. This is accomplished in a Silicon-on-Insulator (SOI) CMOS-compatible platform using a simple integrated geometry based on (π-)phase-shifted Bragg gratings. Moreover, we achieve on-chip generation of sub-picosecond Hermite-Gaussian pulse waveforms, which are noteworthy for applications in next-generation optical telecommunications.

© 2011 OSA

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(130.3120) Integrated optics : Integrated optics devices
(200.3050) Optics in computing : Information processing
(230.1150) Optical devices : All-optical devices
(320.7080) Ultrafast optics : Ultrafast devices
(070.7145) Fourier optics and signal processing : Ultrafast processing

ToC Category:
Integrated Optics

Original Manuscript: July 22, 2011
Revised Manuscript: September 3, 2011
Manuscript Accepted: September 6, 2011
Published: September 22, 2011

K.A. Rutkowska, D. Duchesne, M.J. Strain, R. Morandotti, M. Sorel, and J. Azaña, "Ultrafast all-optical temporal differentiators based on CMOS-compatible integrated-waveguide Bragg gratings," Opt. Express 19, 19514-19522 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Photonic technologies, Nature Insight 424, No. 6950 (2003). http://www.nature.com/nature/insights/6950.html .
  2. J. Azaña, C. K. Madsen, K. Takiguchi, and G. Cincontti, eds., special issue on “Optical signal processing,” IEEE/OSA J. Lightwav.Technol. 24, 2484–2767 (2006).
  3. M. Vasilyev, Y. Su, and C. McKinstrie, “Nonlinear optical signal processing,” IEEE J. Sel. Top. Quantum Electron. 14(3), 527–528 (2008). [CrossRef]
  4. N. Izhaky, M. T. Morse, S. Koehl, O. Cohen, D. Rubin, A. Barkai, G. Sarid, R. Cohen, and M. J. Paniccia, “Development of CMOS-compatible integrated silicon photonics devices,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1688–1698 (2006). [CrossRef]
  5. M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008). [CrossRef] [PubMed]
  6. M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat. Commun. 1(3), 1–5 (2010). [CrossRef] [PubMed]
  7. A. V. Oppenheim, A. S. Willsky, and S. H. Nawab, Signals and Systems (2nd edition, Prentice Hall, Upper Saddle River, NJ, USA, 1996).
  8. C.-W. Hsue, L.-C. Tsai, and K.-L. Chen, “Implementation of first-order and second-order microwave differentiators,” IEEE Trans. Microw. Theory Tech. 52(5), 1443–1448 (2004). [CrossRef]
  9. C.-W. Hsue, L.-C. Tsai, and Y.-H. Tsai, “Time-constant control of microwave integrators using transmission lines,” IEEE Trans. Microw. Theory Tech. 54(3), 1043–1047 (2006). [CrossRef]
  10. J. Azaña, “Ultrafast analog all-optical signal processors based on fiber-Bragg grating devices,” IEEE Photon. J. 2(3), 359–386 (2010). [CrossRef]
  11. Y. Park, J. Azaña, and R. Slavík, “Ultrafast all-optical first- and higher-order differentiators based on interferometers,” Opt. Lett. 32(6), 710–712 (2007). [CrossRef] [PubMed]
  12. N. Q. Ngo, S. F. Yu, S. C. Tjin, and C. H. Kam, “A new theoretical basis of higher-derivative optical differentiators,” Opt. Commun. 230(1-3), 115–129 (2004). [CrossRef]
  13. R. Slavík, Y. Park, M. Kulishov, R. Morandotti, and J. Azaña, “Ultrafast all-optical differentiators,” Opt. Express 14(22), 10699–10707 (2006). [CrossRef] [PubMed]
  14. N. K. Berger, B. Levit, B. Fischer, M. Kulishov, D. V. Plant, and J. Azaña, “Temporal differentiation of optical signals using a phase-shifted fiber Bragg grating,” Opt. Express 15(2), 371–381 (2007). [CrossRef] [PubMed]
  15. M. Li, D. Janner, J. P. Yao, and V. Pruneri, “Arbitrary-order all-fiber temporal differentiator based on a fiber Bragg grating: design and experimental demonstration,” Opt. Express 17(22), 19798–19807 (2009). [CrossRef] [PubMed]
  16. F. Liu, T. Wang, L. Qiang, T. Ye, Z. Zhang, M. Qiu, and Y. Su, “Compact optical temporal differentiator based on silicon microring resonator,” Opt. Express 16(20), 15880–15886 (2008). [CrossRef] [PubMed]
  17. Z. Li and C. Wu, “All-optical differentiator and high-speed pulse generation based on cross-polarization modulation in a semiconductor optical amplifier,” Opt. Lett. 34(6), 830–832 (2009). [CrossRef] [PubMed]
  18. F. Li, Y. Park, and J. Azaña, “Linear characterization of optical pulses with durations ranging from the picosecond to the nanosecond regime using ultrafast photonic differentiation,” IEEE/OSA J. Lightwave Technol. 27(21), 4623–4633 (2009). [CrossRef]
  19. M. Kulishov and J. Azaña, “Design of high-order all-optical temporal differentiators based on multiple-phase-shifted fiber Bragg gratings,” Opt. Express 15(10), 6152–6166 (2007). [CrossRef] [PubMed]
  20. L. K. Oxenlowe, R. Slavik, M. Galili, H. C. M. Mulvad, A. T. Clausen, Y. Park, J. Azaña, and P. Jeppesen, “640 Gbit/s timing jitter tolerant data processing using a long-period fiber grating-based flat-top pulse shaper,” IEEE J. Sel. Top. Quantum Electron. 14(3), 566–572 (2008). [CrossRef]
  21. M. Gnan, G. Bellanca, H. Chong, P. Bassi, and R. M. De La Rue, “Modeling of photonic wire Bragg gratings,” Opt. Quantum Electron. 38(1-3), 133–148 (2006). [CrossRef]
  22. M. J. Strain and M. Sorel, “Design and fabrication of integrated chirped Bragg gratings for on-chip dispersion control,” IEEE J. Quantum Electron. 46(5), 774–782 (2010). [CrossRef]
  23. R. Kashyap, Fiber Bragg gratings (second edition, Optics and Photonics Series, Academic Press, San Diego, 2009).
  24. H. J. A. da Silva and J. J. O’Reilly, “Optical pulse modeling with Hermite-Gaussian functions,” Opt. Lett. 14(10), 526–528 (1989). [CrossRef] [PubMed]
  25. J. E. McGeehan, S. M. R. M. Nezam, P. Saghari, A. E. Willner, R. Omrani, and P. V. Kumar, “Experimental demonstration of OCDMA transmission using a three-dimensional (time-wavelength-polarization) codeset,” IEEE/OSA J. Lightwave Technol. 23(10), 3282–3289 (2005). [CrossRef]
  26. M. Stratmann, T. Pagel, and F. Mitschke, “Experimental observation of temporal soliton molecules,” Phys. Rev. Lett. 95(14), 143902–1 (2005). [CrossRef] [PubMed]
  27. D. Hofstetter and R. L. Thornton, “Theory of loss measurements of Fabry Perot resonators by Fourier analysis of the transmission spectra,” Opt. Lett. 22(24), 1831–1833 (1997). [CrossRef] [PubMed]
  28. G. Roelkens, P. Dumon, W. Bogaerts, D. Van Thourhout, and R. Baets, “Efficient silicon-on-insulator fiber coupler fabricated using 248-nm-deep UV lithography,” IEEE Photon. Technol. Lett. 17(12), 2613–2615 (2005). [CrossRef]
  29. C. Dorrer, N. Belabas, J.-P. Likforman, and M. Joffre, “Experimental implementation of Fourier-transform spectral interferometry and its application to study of spectrometers,” Appl. Phys. B 70, S99–S107 (2000). [CrossRef]
  30. M. H. Asghari and J. Azaña, “Proposal and analysis of a reconfigurable pulse shaping technique based on multi-arm optical differentiators,” Opt. Commun. 281(18), 4581–4588 (2008). [CrossRef]
  31. C. Cuadrado-Laborde and M. V. Andrés, “In-fiber all-optical fractional differentiator,” Opt. Lett. 34(6), 833–835 (2009). [CrossRef] [PubMed]
  32. M. H. Asghari and J. Azaña, “Design of all-optical high-order temporal integrators based on multiple-phase-shifted Bragg gratings,” Opt. Express 16(15), 11459–11469 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited