OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 20 — Sep. 26, 2011
  • pp: 19532–19541

Transfer of photonic crystal membranes to a transparent gel substrate

Lj. Babić, R. Leijssen, E.F.C. Driessen, and M.J.A. de Dood  »View Author Affiliations

Optics Express, Vol. 19, Issue 20, pp. 19532-19541 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1768 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report a method of transferring 150 nm thick Al0.35Ga0.65As photonic crystal slabs to a transparent gel, without compromising their optical properties. We demonstrate successful transfer for membranes as large as ∼ 425 × 425 μm2. The transfer results in a 2.5% frequency red shift and increases the visibility of the resonances in reflection spectra. The avoided crossings between the modes show a subradiant mode with quality factors up to ∼300. This suggests that the quality factor is only limited by the finite size of the crystal.

© 2011 OSA

OCIS Codes
(050.1940) Diffraction and gratings : Diffraction
(220.4000) Optical design and fabrication : Microstructure fabrication
(260.5740) Physical optics : Resonance
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:
Photonic Crystals

Original Manuscript: July 19, 2011
Revised Manuscript: August 16, 2011
Manuscript Accepted: August 29, 2011
Published: September 22, 2011

Lj. Babić, R. Leijssen, E.F.C. Driessen, and M.J.A. de Dood, "Transfer of photonic crystal membranes to a transparent gel substrate," Opt. Express 19, 19532-19541 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Notomi, “Manipulating light with strongly modulated photonic crystals,” Rep. Prog. Phys. 73, 096501 (2010). [CrossRef]
  2. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 9–12 (2004). [CrossRef]
  3. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoglu, “Quantum nature of a strongly coupled single quantum dot-cavity system.” Nature 445, 896–899 (2007). [CrossRef] [PubMed]
  4. J. J. Wierer, A. David, and M. M. Megens, “III-nitride photonic-crystal light-emitting diodes with high extraction efficiency with high extraction efficiency,” Nat. Photonics 3, 163–169 (2009). [CrossRef]
  5. J. P. Mondia, H. M. van Driel, W. Jiang, A. R. Cowan, and J. F. Young, “Enhanced second-harmonic generation from planar photonic crystals,” Opt. Lett. 28, 2500–2502 (2003). [CrossRef] [PubMed]
  6. Y. Dumeige, I. Sagnes, P. Monnier, P. Vidakovic, I. Abram, C. Mériadec, and A. Levenson, “Phase-matched frequency doubling at photonic band edges: efficiency scaling as the fifth power of the length,” Phys. Rev. Lett. 89, 043901 (2002). [CrossRef] [PubMed]
  7. A. D. Bristow, J. P. Mondia, and H. M. van Driel, “Sum and difference frequency generation as diagnostics for leaky eigenmodes in two-dimensional photonic crystal waveguides,” J. Appl. Phys. 99, 023105 (2006). [CrossRef]
  8. P. Kopperschmidt, S. Senz, G. Kästner, D. Hesse, and U. M. Gösele, “Materials integration of gallium arsenide and silicon by wafer bonding,” Appl. Phys. Lett. 72, 3181–3183 (1998). [CrossRef]
  9. Z. Hatzopoulos, D. Cenghera, G. Deligeorgisa, M. Androulidakia, E. Aperathitisa, and G. H. A. Georgakilas, “Molecular beam epitaxy of GaAs/AlGaAs epitaxial structures for integrated optoelectronic devices on Si using GaAs-Si wafer bonding,” J. Cryst. Growth 227–228, 193–196 (2001). [CrossRef]
  10. P. Kopperschmidt, G. Kästner, S. Senz, D. Hesse, and U. Gösele, “Wafer bonding of gallium arsenide on sapphire,” Appl. Phys. A 64, 533–537 (1997). [CrossRef]
  11. E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, “Ultracompact biochemical sensor built with two-dimensional photoniccrystal microcavity,” Opt. Lett. 29, 1093–1095 (2004). [CrossRef] [PubMed]
  12. T. van der Sar, E. C. Heeres, G. M. Dmochowski, G. de Lange, L. Robledo, T. H. Oosterkamp, and R. Hanson, “Nanopositioning of a diamond nanocrystal containing a single nitrogen-vacancy defect center,” Appl. Phys. Lett. 94, 173104 (2009). [CrossRef]
  13. D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vučkovič, H. Park, and M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett. 10, 3922–3926 (2010). [CrossRef] [PubMed]
  14. K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65, 3152–3155 (1990). [CrossRef] [PubMed]
  15. R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Existence of a photonic band gap in two dimensions,” Appl. Phys. Lett. 61, 495–497 (1992). [CrossRef]
  16. C. T. Chan, S. Datta, K. M. Ho, and C. M. Soukoulis, “A7 structure: a family of photonic crystals,” Phys. Rev. B 50, 1988–1991 (1994). [CrossRef]
  17. T. Maeda, J. Lee, R. Shul, J. Han, J. Hong, E. Lambers, S. Pearton, C. Abernathy, and W. Hobson, “Inductively coupled plasma etching of III–V semiconductors in BCl3-based chemistries. I. GaAs, GaN, GaP, GaSb and AlGaAs,” Appl. Surf. Sci. 143, 174–182 (1999). [CrossRef]
  18. E. F. C. Driessen, D. Stolwijk, and M. J. A. de Dood, “Asymmetry reversal in the reflection from a two-dimensional photonic crystal,” Opt. Lett. 32, 3137–3139 (2007). [CrossRef] [PubMed]
  19. L. Babić and M. J. A. de Dood, “Interpretation of the fano lineshape reversal in the reflectivity spectra of photonic crystal slabs,” Opt. Express 18, 26569–26582 (2011). [CrossRef]
  20. Detailed information and technical datasheets are available via the manufacturers website: http://www.gelpak.com
  21. http://www.ioffe.ru/SVA/NSM/Semicond/AlGaAs/index.html .
  22. The force Fs to peel off the membrane breaking all gel-membrane bonds on the surface is proportional to L × (1 – π(r/a)2)). The force needed to break the membrane free Fb is given by the work needed to peel free the membranes along the sides and gives Fb ∝ d × (a – 2r). The ratio between the two forces Fs/Fb is then proportional to Ld×1−π(r/a)2a−2r, where the second term is a geometrical factor that accounts for the square lattice of air holes in the membrane.
  23. M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, J. F. Young, S. R. Johnson, J. MacKenzie, and T. Tiedje, “Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice,” Appl. Phys. Lett. 70, 1438–1440 (1997). [CrossRef]
  24. V. N. Astratov, D. M. Whittaker, I. S. Culshaw, R. M. Stevenson, M. S. Skolnick, T. F. Krauss, and R. M. De La Rue, “Photonic band-structure effects in the reflectivity of periodically patterned waveguides,” Phys. Rev. B 60, R16255–R16258 (1999). [CrossRef]
  25. S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the fano resonance in optical resonators,” J. Opt. Soc. Am. A 20, 569–572 (2003). [CrossRef]
  26. T. Ochiai and K. Sakoda, “Nearly free-photon approximation for two-dimensional photonic crystal slabs,” Phys. Rev. B 64, 045108 (2001). [CrossRef]
  27. K. B. Crozier, V. Lousse, O. Kilic, S. Kim, S. Fan, and O. Solgaard, “Air-bridged photonic crystal slabs at visible and near-infrared wavelengths,” Phys. Rev. B 73, 115126 (2006). [CrossRef]
  28. W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227–6244 (1996). [CrossRef]
  29. C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, “Femtosecond light transmission and subradiant damping in plasmonic crystals,” Phys. Rev. Lett. 94, 113901 (2005). [CrossRef] [PubMed]
  30. M. J. A. de Dood, E. F. C. Driessen, D. Stolwijk, and M. P. van Exter, “Observation of coupling between surface plasmons in index-matched hole arrays,” Phys. Rev. B 77, 115437 (2008). [CrossRef]
  31. J. Wiersig, “Formation of long-lived, scarlike modes near avoided resonance crossings in optical microcavities,” Phys. Rev. Lett. 97, 253901 (2006). [CrossRef]
  32. Q. H. Song and H. Cao, “Improving optical confinement in nanostructures via external mode coupling,” Phys. Rev. Lett. 105, 053902 (2010). [CrossRef] [PubMed]
  33. P. Paddon and J. Young, “Two-dimensional vector-coupled-mode theory for textured planar waveguides,” Phys. Rev. B 61, 2090–2101 (2000). [CrossRef]
  34. A. R. Cowan and Jeff F. Young, “Mode matching for second-harmonic generation in photonic crystal waveguides,” Phys. Rev. B 65, 085106 (2002). [CrossRef]
  35. J. Torres, D. Coquillat, R. Legros, J. P. Lascaray, F. Teppe, D. Scalbert, D. Peyrade, Y. Chen, O. Briot, M. Le Vassor d’Yerville, E. Centeno, D. Cassagne, and J. P. Albert, “Giant second-harmonic generation in a one-dimensional gan photonic crystal,” Phys. Rev. B 69, 085105 (2004). [CrossRef]
  36. F. Jelezko, A. Volkmer, I. Popa, K. K. Rebane, and J. Wrachtrup, “Coherence length of photons from a single quantum system,” Phys. Rev. A 67, 041802 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited