OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 20 — Sep. 26, 2011
  • pp: 19582–19590

Fiber based polarization filter for radially and azimuthally polarized light

Christoph Jocher, Cesar Jauregui, Christian Voigtländer, Fabian Stutzki, Stefan Nolte, Jens Limpert, and Andreas Tünnermann  »View Author Affiliations


Optics Express, Vol. 19, Issue 20, pp. 19582-19590 (2011)
http://dx.doi.org/10.1364/OE.19.019582


View Full Text Article

Enhanced HTML    Acrobat PDF (987 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate a new fiber based concept to filter azimuthally or radially polarized light. This concept is based on the lifting of the modal degeneracy that takes place in high numerical aperture fibers. In such fibers, the radially and azimuthally polarized modes can be spectrally separated using a fiber Bragg grating. As a proof of principle, we filter azimuthally polarized light in a commercially available fiber in which a fiber Bragg grating has been written by a femtosecond pulsed laser.

© 2011 OSA

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2400) Fiber optics and optical communications : Fiber properties
(060.2420) Fiber optics and optical communications : Fibers, polarization-maintaining
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: July 29, 2011
Revised Manuscript: August 29, 2011
Manuscript Accepted: August 29, 2011
Published: September 22, 2011

Citation
Christoph Jocher, Cesar Jauregui, Christian Voigtländer, Fabian Stutzki, Stefan Nolte, Jens Limpert, and Andreas Tünnermann, "Fiber based polarization filter for radially and azimuthally polarized light," Opt. Express 19, 19582-19590 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-20-19582


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D Appl. Phys.32(13), 1455–1461 (1999). [CrossRef]
  2. L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett.86(23), 5251–5254 (2001). [CrossRef] [PubMed]
  3. Q. Zhan, “Evanescent Bessel beam generation via surface plasmon resonance excitation by a radially polarized beam,” Opt. Lett.31(11), 1726–1728 (2006). [CrossRef] [PubMed]
  4. Q. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express12(15), 3377–3382 (2004). [CrossRef] [PubMed]
  5. W. D. Kimura, G. H. Kim, R. D. Romea, L. C. Steinhauer, I. V. Pogorelsky, K. P. Kusche, R. C. Fernow, X. Wang, and Y. Liu, “Laser acceleration of relativistic electrons using the inverse Cherenkov effect,” Phys. Rev. Lett.74(4), 546–549 (1995). [CrossRef] [PubMed]
  6. M. Stalder and M. Schadt, “Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters,” Opt. Lett.21(23), 1948–1950 (1996). [CrossRef] [PubMed]
  7. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett.91(23), 233901 (2003). [CrossRef] [PubMed]
  8. S. C. Tidwell, D. H. Ford, and W. D. Kimura, “Generating radially polarized beams interferometrically,” Appl. Opt.29(15), 2234–2239 (1990). [CrossRef] [PubMed]
  9. T. G. Euser, M. A. Schmidt, N. Y. Joly, C. Gabriel, C. Marquardt, L. Y. Zang, M. Förtsch, P. Banzer, A. Brenn, D. Elser, M. Scharrer, G. Leuchs, and P. St. J. Russell, “Birefringence and dispersion of cylindrically polarized modes in nanobore photonic crystal fiber,” J. Opt. Soc. Am. B28(1), 193–198 (2011). [CrossRef]
  10. S. Ramachandran, P. Kristensen, and M. F. Yan, “Generation and propagation of radially polarized beams in optical fibers,” Opt. Lett.34(16), 2525–2527 (2009). [CrossRef] [PubMed]
  11. F. Stutzki, C. Jauregui, C. Voigtländer, J. U. Thomas, J. Limpert, S. Nolte, and A. Tünnermann, “Passively stabilized 215 W monolithic CW LMA-fiber laser with innovative transversal mode filter,” Proc. SPIE7580, 75801K, 75801K-10 (2010). [CrossRef]
  12. F. Stutzki, C. Jauregui, J. Limpert, and A. Tünnermann, “Real-time characterisation of modal content in monolithic few-mode fiber lasers,” Electron. Lett.47(4), 274–275 (2011). [CrossRef]
  13. J. M. O. Daniel, J. S. P. Chan, J. W. Kim, J. K. Sahu, M. Ibsen, and W. A. Clarkson, “Novel technique for mode selection in a multimode fiber laser,” Opt. Express19(13), 12434–12439 (2011). [CrossRef] [PubMed]
  14. A. W. Snyder, “Asymptotic expressions for eigenfunctions and eigenvalues of a dielectric or optical waveguide,” IEEE Trans. Microw. Theory Tech.17(12), 1130–1138 (1969). [CrossRef]
  15. D. Gloge, “Weakly guiding fibers,” Appl. Opt.10(10), 2252–2258 (1971). [CrossRef] [PubMed]
  16. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Kluwer Academic, 1983).
  17. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol.15(8), 1277–1294 (1997). [CrossRef]
  18. J. U. Thomas, C. Voigtländer, S. Nolte, A. Tünnermann, N. Jovanovic, G. D. Marshall, M. J. Withford, and M. Steel, “Mode selective fibre Bragg grating,” Proc. SPIE7589, 75890J, 75890J-9 (2010). [CrossRef]
  19. J. Thomas, E. Wikszak, T. Clausnitzer, U. Fuchs, U. Zeitner, S. Nolte, and A. Tünnermann, “Inscription of fiber Bragg gratings with femtosecond pulses using a phase mask scanning technique,” Appl. Phys., A Mater. Sci. Process.86(2), 153–157 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: AVI (3911 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited