OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 20 — Sep. 26, 2011
  • pp: 19627–19642

Analysis of single Monte Carlo methods for prediction of reflectance from turbid media

Michele Martinelli, Adam Gardner, David Cuccia, Carole Hayakawa, Jerome Spanier, and Vasan Venugopalan  »View Author Affiliations

Optics Express, Vol. 19, Issue 20, pp. 19627-19642 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1615 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Starting from the radiative transport equation we derive the scaling relationships that enable a single Monte Carlo (MC) simulation to predict the spatially- and temporally-resolved reflectance from homogeneous semi-infinite media with arbitrary scattering and absorption coefficients. This derivation shows that a rigorous application of this single Monte Carlo (sMC) approach requires the rescaling to be done individually for each photon biography. We examine the accuracy of the sMC method when processing simulations on an individual photon basis and also demonstrate the use of adaptive binning and interpolation using non-uniform rational B-splines (NURBS) to achieve order of magnitude reductions in the relative error as compared to the use of uniform binning and linear interpolation. This improved implementation for sMC simulation serves as a fast and accurate solver to address both forward and inverse problems and is available for use at http://www.virtualphotonics.org/.

© 2011 OSA

OCIS Codes
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.5280) Medical optics and biotechnology : Photon migration
(170.7050) Medical optics and biotechnology : Turbid media

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: August 4, 2011
Revised Manuscript: August 23, 2011
Manuscript Accepted: August 25, 2011
Published: September 22, 2011

Virtual Issues
Vol. 6, Iss. 10 Virtual Journal for Biomedical Optics

Michele Martinelli, Adam Gardner, David Cuccia, Carole Hayakawa, Jerome Spanier, and Vasan Venugopalan, "Analysis of single Monte Carlo methods for prediction of reflectance from turbid media," Opt. Express 19, 19627-19642 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Kienle and M. S. Patterson, “Improved solutions of the steady-state and the time-resolved diffusion equations for reflectance from a semi-infinite turbid medium,” J. Opt. Soc. Am. A 14, 246–254 (1997). [CrossRef]
  2. A. H. Hielscher, “The influence of boundary conditions on the accuracy of diffusion theory in time-resolved reflectance spectroscopy of biological tissues,” Phys. Med. Biol. 40, 1957–1975 (1995). [CrossRef] [PubMed]
  3. J. Spanier and E. M. Gelbard, Monte Carlo Principles and Neutron Transport Problems (Dover Publications, 2008).
  4. A. D. Kim, “Transport theory for light propagation in biological tissue,” J. Opt. Soc. Am. A 21, 820–827 (2004). [CrossRef]
  5. A. H. Hielscher, R. E. Alcouffe, and R. E. Barbour, “Comparison of finite-difference transport and diffusion calculations for photon migration in homogeneous and heterogeneous tissues,” Phys. Med. Biol. 43, 1285–1302 (1998). [CrossRef] [PubMed]
  6. R. C. Haskell, L. O. Svaasand, T. Tsay, T. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727–2741 (1994). [CrossRef]
  7. A. Kienle and M. S. Patterson, “Determination of the optical properties of semi-infinite turbid media from frequency-domain reflectance close to the source,” Phys. Med. Biol. 42, 1801–1819 (1997). [CrossRef] [PubMed]
  8. M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989). [CrossRef] [PubMed]
  9. B. C. Wilson and G. Adam, “A Monte Carlo model for the absorption and distributions of light in tissue,” Med. Phys. 10, 824–830 (1983). [CrossRef] [PubMed]
  10. R. Graaff, M. H. Koelink, F. F. M. De Mul, W. G. Zijistra, A. C. M. Dassel, and J. G. Aarnoudse, “Condensed Monte Carlo simulations for the description of light transport,” Appl. Opt. 32, 426–434 (1993). [CrossRef] [PubMed]
  11. A. Kienle and M. S. Patterson, “Determination of the optical properties of turbid media from a single Monte Carlo simulation,” Phys. Med. Biol. 41, 2221–2227 (1996). [CrossRef] [PubMed]
  12. A. Pifferi, P. Taroni, G. Valentini, and S. Andersson-Engels, “Real-time method for fitting time-resolved reflectance and transmittance measurements with a Monte Carlo model,” Appl. Opt. 37, 2774–2780 (1998). [CrossRef]
  13. E. Alerstam, S. Andersson-Engels, and T. Svensson, “White Monte Carlo for time-resolved photon migration,” J. Biomed. Opt. 13, 041301 (2008). [CrossRef]
  14. G. M. Palmer and N. Ramanujam, “Monte Carlo-based inverse model for calculating tissue optical properties. Part I: Theory and validation on synthetic phantoms,” Appl. Opt. 45, 1062–1071 (2006). [CrossRef] [PubMed]
  15. G. M. Palmer, C. F. Zhu, T. M. Breslin, F. S. Xu, K. W. Gilchrist, and N. Ramanujam, “Monte Carlo-based inverse model for calculating tissue optical properties. Part I: Application to breast cancer,” Appl. Opt. 45, 1072–1078 (2006). [CrossRef] [PubMed]
  16. H. Xu, T. J. Farrell, and M. S. Patterson, “Investigation of light propagation models to determine the optical properties of tissue from interstitial frequency domain fluence measurements,” J. Biomed. Opt. 11, 1–18 (2006). [CrossRef]
  17. D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14, 024012 (2009). [CrossRef] [PubMed]
  18. C. K. Hayakawa, J. Spanier, F. Bevilacqua, A. K. Dunn, J. S. You, B. J. Tromberg, and V. Venugopalan, “Perturbation Monte Carlo methods to solve inverse photon migration problems in heterogeneous tissues,” Opt. Lett. 26, 1335–1337 (2001). [CrossRef]
  19. I. Seo, J. S. You, C. K. Hayakawa, and V. Venugopalan, “Perturbation and differential Monte Carlo methods for measurement of optical properties in a layered epithelial tissue model,” J. Biomed. Opt. 12, 1–15 (2007). [CrossRef]
  20. A. Kienle, M. S. Patterson, N. Dognitz, R. Bays, G. Wagnières, and H. van Den Bergh, “Noninvasive determination of the optical properties of two-layered turbid media,” Appl. Opt. 37, 779–791 (1998). [CrossRef]
  21. S. L. Jacques and L. Wang, “Monte Carlo modeling of light transport in multi-layered tissue,” Comput. Methods Programs Biomed. 47, 131–146 (1995). [CrossRef] [PubMed]
  22. W. Cheong and S. A. Prahl. “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990). [CrossRef]
  23. L. G. Henyey and J. L. Greenstein, “Diffuse radiation of the galaxy,” Astrophys. J. 93, 70–83 (1941). [CrossRef]
  24. W. Hines, C. D. Montgomery, M. D. Goldsman, and M. C. Borror, Probability and Statistics in Engineering (John Wiley & Sons Inc., 2003).
  25. J. Dougherty, R. Kohavi, and S. Mehran, “Supervised and unsupervised discretization of continuous features,” in Proceedings 12th International Conference on Machine Learning (Morgan Kaufmann, 1995).
  26. M. Boulle, “Optimal bin number for equal frequency discretization,” Intell. Data Anal. 9, 175–188 (2005).
  27. M. H. Kalos and P. A. Whitlock, Monte Carlo Methods Volume 1: Basics (Wiley-Interscience, 1995).
  28. W. Tiller and L. Piegl, The NURBS Book (Springer, 1995).
  29. F. D. Rogers, An Introduction to NURBS With Historical Perspective (Morgan Kaufmann, 2004).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited