OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 20 — Sep. 26, 2011
  • pp: 19643–19652

Optofluidic immobility of particles trapped in liquid-filled hollow-core photonic crystal fiber

M. K. Garbos, T. G. Euser, and P. St. J. Russell  »View Author Affiliations

Optics Express, Vol. 19, Issue 20, pp. 19643-19652 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1457 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We study the conditions under which a particle, laser-guided in a vertically-oriented hollow-core photonic crystal fiber filled with liquid, can be kept stationary against a microfluidic counter-flow. An immobility parameter—the fluid flow rate required to immobilize a particle against the radiation force produced by unit guided optical power—is introduced to quantify the conditions under which this occurs, including radiation, viscous and gravity forces. Measurements show that this parameter depends strongly on the ratio of particle radius a to core radius R, peaking at an intermediate value of a/R. The results follow fairly well the theoretical estimates of the optical (calculated approximately using a ray optics approach) and numerically simulated drag forces. We suggest that the system has potential applications in, e.g., measurement of the diameter, refractive index and density of particles, synthesis and biomedical research.

© 2011 OSA

OCIS Codes
(350.4855) Other areas of optics : Optical tweezers or optical manipulation
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: August 4, 2011
Revised Manuscript: September 12, 2011
Manuscript Accepted: September 15, 2011
Published: September 22, 2011

Virtual Issues
Vol. 6, Iss. 10 Virtual Journal for Biomedical Optics

M. K. Garbos, T. G. Euser, and P. St. J. Russell, "Optofluidic immobility of particles trapped in liquid-filled hollow-core photonic crystal fiber," Opt. Express 19, 19643-19652 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Kawata and T. Sugiura, “Movement of micrometer-sized particles in the evanescent field of a laser beam,” Opt. Lett.17(11), 772–774 (1992). [CrossRef] [PubMed]
  2. S. Mandal and D. Erickson, “Optofluidic transport in liquid core waveguiding structures,” Appl. Phys. Lett.90(18), 184103 (2007). [CrossRef]
  3. A. H. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature457(7225), 71–75 (2009). [CrossRef] [PubMed]
  4. T. G. Euser, M. K. Garbos, J. S. Y. Chen, and P. St. J. Russell, “Precise balancing of viscous and radiation forces on a particle in liquid-filled photonic bandgap fiber,” Opt. Lett.34(23), 3674–3676 (2009). [CrossRef] [PubMed]
  5. T. G. Euser, M. K. Garbos, J. S. Y. Chen, and P. St. J. Russell, “Precise balancing of viscous and radiation forces on a particle in liquid-filled photonic bandgap fiber: erratum,” Opt. Lett.35(13), 2142 (2010). [CrossRef]
  6. M. K. Garbos, T. G. Euser, O. A. Schmidt, S. Unterkofler, and P. St. J. Russell, “Doppler velocimetry on microparticles trapped and propelled by laser light in liquid-filled photonic crystal fiber,” Opt. Lett.36(11), 2020–2022 (2011). [CrossRef] [PubMed]
  7. The hydraulic radius R = 2A/Lp is the radius of a circular channel with the same area A and wetted perimeter Lp as the slightly non-circular hollow core. From measurements of a high resolution scanning electron micrograph we find R = 8.7 μm.
  8. T. A. Birks, D. M. Bird, T. D. Hedley, J. M. Pottage, and P. St. J. Russell, “Scaling laws and vector effects in bandgap-guiding fibres,” Opt. Express12(1), 69–74 (2004). [CrossRef] [PubMed]
  9. G. Antonopoulos, F. Benabid, T. A. Birks, D. M. Bird, J. C. Knight, and P. St. J. Russell, “Experimental demonstration of the frequency shift of bandgaps in photonic crystal fibers due to refractive index scaling,” Opt. Express14(7), 3000–3006 (2006). [CrossRef] [PubMed]
  10. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett.11(5), 288–290 (1986). [CrossRef] [PubMed]
  11. N. Al Quddus, W. A. Moussa, and S. Bhattacharjee, “Motion of a spherical particle in a cylindrical channel using arbitrary Lagrangian-Eulerian method,” J. Colloid Interface Sci.317(2), 620–630 (2008). [CrossRef] [PubMed]
  12. A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J.61(2), 569–582 (1992). [CrossRef] [PubMed]
  13. W. L. Moreira, A. A. R. Neves, M. K. Garbos, T. G. Euser, P. St, J. Russell, and C. Lenz Cesar, “Expansion of arbitrary electromagnetic fields in terms of vector spherical wave functions,” arXiv.org, arXiv:1003.2392v2 (2010).
  14. T. Imasaka, Y. Kawabata, T. Kaneta, and Y. Ishidzu, “Optical chromatography,” Anal. Chem.67(11), 1763–1765 (1995). [CrossRef]
  15. S. J. Hart and A. V. Terray, “Refractive-index-driven separation of colloidal polymer particles using optical chromatography,” Appl. Phys. Lett.83(25), 5316–5318 (2003). [CrossRef]
  16. P. C. Ashok, R. F. Marchington, P. Mthunzi, T. F. Krauss, and K. Dholakia, “Optical chromatography using a photonic crystal fiber with on-chip fluorescence excitation,” Opt. Express18(6), 6396–6407 (2010). [CrossRef] [PubMed]
  17. P. Domachuk, N. Wolchover, M. Cronin-Golomb, and F. G. Omenetto, “Effect of hollow-core photonic crystal fiber microstructure on transverse optical trapping,” Appl. Phys. Lett.94(14), 141101 (2009). [CrossRef]
  18. J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J.88(5), 3689–3698 (2005). [CrossRef] [PubMed]
  19. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett.24(4), 156–159 (1970). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited