OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 20 — Sep. 26, 2011
  • pp: 19717–19730

Differing self-similarity in light scattering spectra: a potential tool for pre-cancer detection

Sayantan Ghosh, Jalpa Soni, Harsh Purwar, Jaidip Jagtap, Asima Pradhan, Nirmalya Ghosh, and Prasanta K. Panigrahi  »View Author Affiliations

Optics Express, Vol. 19, Issue 20, pp. 19717-19730 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1318 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The fluctuations in the elastic light scattering spectra of normal and dysplastic human cervical tissues analyzed through wavelet transform based techniques reveal clear signatures of self-similar behavior in the spectral fluctuations. The values of the scaling exponent observed for these tissues indicate the differences in the self-similarity for dysplastic tissues and their normal counterparts. The strong dependence of the elastic light scattering on the size distribution of the scatterers manifests in the angular variation of the scaling exponent. Interestingly, the spectral fluctuations in both these tissues showed multi-fractality (non-stationarity in fluctuations), the degree of multi-fractality being marginally higher in the case of dysplastic tissues. These findings using the multi-resolution analysis capability of the discrete wavelet transform can contribute to the recent surge in the exploration for non-invasive optical tools for pre-cancer detection.

© 2011 OSA

OCIS Codes
(100.7410) Image processing : Wavelets
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(290.0290) Scattering : Scattering
(170.6935) Medical optics and biotechnology : Tissue characterization

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: July 14, 2011
Revised Manuscript: August 23, 2011
Manuscript Accepted: August 25, 2011
Published: September 23, 2011

Virtual Issues
Vol. 6, Iss. 10 Virtual Journal for Biomedical Optics

Sayantan Ghosh, Jalpa Soni, Harsh Purwar, Jaidip Jagtap, Asima Pradhan, Nirmalya Ghosh, and Prasanta K. Panigrahi, "Differing self-similarity in light scattering spectra: a potential tool for pre-cancer detection," Opt. Express 19, 19717-19730 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. Ramanujam, “Fluorescence spectroscopy of neoplastic and non-neoplastic tissues,” Neoplasia 2, 89–117 (2000). [CrossRef] [PubMed]
  2. R. Richards-Kortum and E. Sevick-Muraca, “Quantitative optical spectroscopy for tissue diagnosis,” Annu. Rev. Phys. Chem. 47, 555–606 (1996). [CrossRef] [PubMed]
  3. R. Alfano, G. Tang, A. Pradhan, W. Lam, D. Choy, and E. Opher, “Fluorescence spectra from cancerous and normal human breast and lung tissues,” IEEE J. Quantum Electron. 23, 1806–1811 (1987). [CrossRef]
  4. N. Biswal, S. Gupta, N. Ghosh, and A. Pradhan, “Recovery of turbidity free fluorescence from measured fluorescence: an experimental approach,” Opt. Express 11, 3320–3331 (2003). [CrossRef] [PubMed]
  5. N. Ghosh, S. K. Majumder, H. S. Patel, and P. K. Gupta, “Depth-resolved fluorescence measurement in a layered turbid mediumby polarized fluorescence spectroscopy,” Opt. Lett. 30, 162–164 (2005). [CrossRef] [PubMed]
  6. N. Ghosh, S. K. Majumder, and P. K. Gupta, “Polarized fluorescence spectroscopy of human tissues,” Opt. Lett. 27, 2007–2009 (2002). [CrossRef]
  7. A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer by using Raman spectroscopy,” Proc. Natl. Acad. Sci. (USA) 102, 12371–12376 (2005). [CrossRef]
  8. N. N. Boustany, S. A. Boppart, and V. Backman, “Microscopic imaging and spectroscopy with scattered light,” Annu. Rev. Biomed. Eng. 12, 285–314 (2010). [CrossRef] [PubMed]
  9. J. Fujimoto, “Optical coherence tomography for ultrahigh resolution in vivo imaging,” Nat. Biotechnol. 21, 1361–1367 (2003). [CrossRef] [PubMed]
  10. J. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron. 5, 1205–1215 (1999). [CrossRef]
  11. J. C. Hebden, S. R. Arridge, and D. T. Delpy, “Optical imaging in medicine: I. Experimental techniques,” Phys. Med. Biol. 42, 825–840 (1997). [CrossRef] [PubMed]
  12. N. Ghosh, A. Banerjee, and J. Soni, “Turbid medium polarimetry in biomedical imaging and diagnosis,” Eur. Phys. J. Appl. Phys. 54, 30001 (2011). [CrossRef]
  13. S. L. Jacques, J. C. Ramella-Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7, 329–340 (2002). [CrossRef] [PubMed]
  14. W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007). [CrossRef] [PubMed]
  15. R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Imaging human epithelial properties with polarized light-scattering spectroscopy,” Nat. Med. 7, 1245–1248 (2001). [CrossRef] [PubMed]
  16. M. Kalashnikov, W. Choi, C.-C. Yu, Y. Sung, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Assessing light scattering of intracellular organelles in single intact living cells,” Opt. Express 17, 19674–19681 (2009). [CrossRef] [PubMed]
  17. W. Choi, C.-C. Yu, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Field-based angle-resolved light-scattering study of single live cells,” Opt. Lett. 33, 1596–1598 (2008). [CrossRef] [PubMed]
  18. R. Graf and A. Wax, “Nuclear morphology measurements using Fourier domain low coherence interferometry,” Opt. Express 13, 4693–4698 (2005). [CrossRef]
  19. A. Wax, C. Yang, and J. A. Izatt, “Fourier-domain low-coherence interferometry for light-scattering spectroscopy,” Opt. Lett. 28, 1230–1232 (2003). [CrossRef] [PubMed]
  20. L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998). [CrossRef]
  21. N. Ghosh, M. Wood, and A. Vitkin, “Polarized light assessment of complex turbid media such as biological tissues using mueller matrix decomposition,” in Handbook of Photonics for Biomedical Science, V. V. Tuchin, ed. (CRC Press, 2010), Medical Physics and Biomedical Engineering, pp. 253–282. [CrossRef]
  22. V. V. Tuchin, L. Wang, and D. A. Zimnyakov, Optical Polarization in Biomedical Applications (Springer-Verlag, 2006).
  23. N. Ghosh, P. Buddhiwant, A. Uppal, S. K. Majumder, H. S. Patel, and P. K. Gupta, “Simultaneous determination of size and refractive index of red blood cells by light scattering measurements,” Appl. Phys. Lett. 88, 084101 (2006). [CrossRef]
  24. N. Ghosh, S. K. Mohanty, S. K. Majumder, and P. K. Gupta, “Measurement of optical transport properties of normal and malignant human breast tissue,” Appl. Opt. 40, 176–184 (2001). [CrossRef]
  25. Y. L. Kim, V. M. Turzhitsky, Y. Liu, H. Subramanian, and P. Pradhan, “Low-coherence enhanced backscattering: review of principles and applications for colon cancer screening,” J. Biomed. Opt. 11, 041125 (2006). [CrossRef] [PubMed]
  26. R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8, 7–16 (2003). [CrossRef] [PubMed]
  27. C.-C. Yu, C. Lau, G. O’Donoghue, J. Mirkovic, S. McGee, L. Galindo, A. Elackattu, E. Stier, G. Grillone, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Quantitative spectroscopic imaging for non-invasive early cancer detection,” Opt. Express 16, 16227–16239 (2008). [CrossRef] [PubMed]
  28. İ. R. Çapoğlu, J. D. Rogers, A. Taflove, and V. Backman, “Accuracy of the Born approximation in calculating the scattering coefficient of biological continuous random media,” Opt. Lett. 34, 2679–2681 (2009). [CrossRef] [PubMed]
  29. M. Hunter, V. Backman, G. Popescu, M. Kalashnikov, C. W. Boone, A. Wax, V. Gopal, K. Badizadegan, G. D. Stoner, and M. S. Feld, “Tissue self-affinity and polarized light scattering in the born approximation: a new model for precancer detection,” Phys. Rev. Lett. 97, 138102 (2006). [CrossRef] [PubMed]
  30. M. Xu and R. R. Alfano, “Fractal mechanisms of light scattering in biological tissue and cells,” Opt. Lett. 30, 3051–3053 (2005). [CrossRef] [PubMed]
  31. C. J. R. Sheppard, “Fractal model of light scattering in biological tissue and cells,” Opt. Lett. 32, 142–144 (2007). [CrossRef]
  32. T. T. Wu, J. Y. Qu, and M. Xu, “Unified Mie and fractal scattering by biological cells and subcellular structures,” Opt. Lett. 32, 2324–2326 (2007). [CrossRef] [PubMed]
  33. W. Gao, “Square law between spatial frequency of spatial correlation function of scattering potential of tissue and spectrum of scattered light,” J. Biomed. Opt. 15, 030502 (2010). [CrossRef] [PubMed]
  34. A. Wax, C. Yang, M. G. Mller, R. Nines, C. W. Boone, V. E. Steele, G. D. Stoner, R. R. Dasari, and M. S. Feld, “In situ detection of neoplastic transformation and chemopreventive effects in rat esophagus epithelium using angle-resolved low-coherence interferometry,” Cancer Res. 63, 3556–3559 (2003). [PubMed]
  35. J. M. Schmitt and G. Kumar, “Turbulent nature of refractive-index variations in biological tissue,” Opt. Lett. 21, 1310–1312 (1996). [CrossRef] [PubMed]
  36. L. Perelman, “Optical diagnostic technology based on light scattering spectroscopy for early cancer detection,” Expert Rev. Med. Devices 3, 787–803 (2006). [CrossRef]
  37. H. Hurst, “Long-term storage capacity of reservoirs,” Trans. Am. Soc. Civ. Eng. 116, 770–808 (1951).
  38. B. Mandelbrot, The Fractal Geometry of Nature (W. H. Freeman, 1982).
  39. J. W. Kantelhardt, S. A. Zschiegner, E. Koscielny-Bunde, S. Havlin, A. Bunde, and H. E. Stanley, “Multifractal detrended fluctuation analysis of nonstationary time series,” Physica A 316, 87–114 (2002). [CrossRef]
  40. P. Manimaran, P. K. Panigrahi, and J. C. Parikh, “Wavelet analysis and scaling properties of time series,” Phys. Rev. E 72, 046120 (2005). [CrossRef]
  41. P. Manimaran, P. Panigrahi, and J. Parikh, “Multiresolution analysis of fluctuations in non-stationary time series through discrete wavelets,” Physica A 388, 2306–2314 (2009). [CrossRef]
  42. S. Gupta, M. Nair, A. Pradhan, N. Biswal, N. Agarwal, A. Agarwal, and P. Panigrahi, “Wavelet-based characterization of spectral fluctuations in normal, benign, and cancerous human breast tissues,” J. Biomed. Opt. 10, 054012 (2005). [CrossRef] [PubMed]
  43. N. Agarwal, S. Gupta, A. Pradhan, K. Vishwanathan, and P. Panigrahi, “Wavelet transform of breast tissue fluorescence spectra: a technique for diagnosis of tumors,” IEEE J. Sel. Top. Quantum Electron. 9, 154–161 (2003). [CrossRef]
  44. A. Gharekhan, S. Arora, K. Mayya, P. Panigrahi, M. Sureshkumar, and A. Pradhan, “Characterizing breast cancer tissues through the spectral correlation properties of polarized fluorescence,” J. Biomed. Opt. 13, 054063 (2008). [CrossRef] [PubMed]
  45. A. Gharekhan, S. Arora, P. Panigrahi, and A. Pradhan, “Distinguishing cancer and normal breast tissue autofluorescence using continuous wavelet transform,” IEEE J. Sel. Top. Quantum Electron. 16, 893–899 (2010). [CrossRef]
  46. A. H. Gharekhan, S. Arora, A. N. Oza, M. B. Sureshkumar, A. Pradhan, and P. K. Panigrahi, “Distinguishing autofluorescence of normal, benign, and cancerous breast tissues through wavelet domain correlation studies,” J. Biomed. Opt. 16, 087003 (2011). [CrossRef] [PubMed]
  47. I. Daubechies, Ten Lectures on Wavelets, 1st ed., CBMS-NSF Regional Conference Series in Applied Mathematics (SIAM: Society for Industrial and Applied Mathematics, 1992). [CrossRef]
  48. M. Farge, “Wavelet transforms and their applications to turbulence,” Annu. Rev. Fluid Mech. 24, 395–458 (1992). [CrossRef]
  49. C. Torrence and G. Compo, “A practical guide to wavelet analysis,” Bull. Am. Meteorol. Soc. 79, 61–78 (1998). [CrossRef]
  50. S. G. Mallat, “A theory for multiresolution signal decomposition: the wavelet representation,” IEEE Trans. Pattern Anal. Mach. Intell.11, 674–693 (1989). [CrossRef]
  51. S. Ghosh, P. Manimaran, and P. K. Panigrahi, “Characterizing multi-scale self-similar behavior and non-statistical properties of financial time series,” Physica A 390, 4304–4316 (2011). [CrossRef]
  52. A. Eke, P. Herman, L. Kocsis, and L. R. Kozak, “Fractal characterization of complexity in temporal physiological signals,” Physiol. Meas. 23, R1–R38 (2002). [CrossRef] [PubMed]
  53. H. E. Stanley and P. Meakin, “Multifractal phenomena in physics and chemistry,” Nature 335, 405–409 (1988). [CrossRef]
  54. P. Šeba, “Random matrix analysis of human EEG data,” Phys. Rev. Lett. 91, 198104 (2003).
  55. J. D. Bancroft and M. Gamble, Theory and Practice of Histopathological Techniques, 5th ed. (Churchill Livingstone, 2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited