OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 20 — Sep. 26, 2011
  • pp: 19740–19751

General boundary mapping method and its application in designing an arbitrarily shaped perfect electric conductor reshaper

Jianguo Guan, Wei Li, Wei Wang, and Zhengyi Fu  »View Author Affiliations

Optics Express, Vol. 19, Issue 20, pp. 19740-19751 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (2129 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A general boundary mapping method is proposed to enable the designing of various transformation devices with arbitrary shapes by reducing the traditional space-to-space mapping to boundary-to-boundary mapping. The method also makes the designing of complex-shaped transformation devices more feasible and flexible. Using the boundary mapping method, an arbitrarily shaped perfect electric conductor (PEC) reshaping device, which is called a “PEC reshaper,” is demonstrated to visually reshape a PEC with an arbitrary shape to another arbitrary one. Unlike the previously reported simple PEC reshaping devices, the arbitrarily shaped PEC reshaper designed here does not need to share a common domain. Moreover, the flexibilities of the boundary mapping method are expected to inspire some novel PEC reshapers with attractive new functionalities.

© 2011 OSA

OCIS Codes
(230.0230) Optical devices : Optical devices
(260.2110) Physical optics : Electromagnetic optics
(160.3918) Materials : Metamaterials

ToC Category:
Physical Optics

Original Manuscript: July 22, 2011
Manuscript Accepted: September 14, 2011
Published: September 23, 2011

Jianguo Guan, Wei Li, Wei Wang, and Zhengyi Fu, "General boundary mapping method and its application in designing an arbitrarily shaped perfect electric conductor reshaper," Opt. Express 19, 19740-19751 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006). [CrossRef] [PubMed]
  2. W. Yan, M. Yan, Z. Ruan, and M. Qiu, “Coordinate transformations make perfect invisibility cloaks with arbitrary shape,” New J. Phys. 10(4), 043040 (2008). [CrossRef]
  3. C. Li and F. Li, “Two-dimensional electromagnetic cloaks with arbitrary geometries,” Opt. Express 16(17), 13414–13420 (2008). [CrossRef] [PubMed]
  4. G. Dupont, S. Guenneau, S. Enoch, G. Demesy, A. Nicolet, F. Zolla, and A. Diatta, “Revolution analysis of three-dimensional arbitrary cloaks,” Opt. Express 17(25), 22603–22608 (2009). [CrossRef] [PubMed]
  5. W. X. Jiang, J. Y. Chin, Z. Li, Q. Cheng, R. P. Liu, and T. J. Cui, “Analytical design of conformally invisible cloaks for arbitrarily shaped objects,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 77(6 ), 066607 (2008). [CrossRef] [PubMed]
  6. A. Nicolet, F. Zolla, and S. Guenneau, “Electromagnetic analysis of cylindrical cloaks of an arbitrary cross section,” Opt. Lett. 33(14), 1584–1586 (2008). [CrossRef] [PubMed]
  7. A. Veltri, “Designs for electromagnetic cloaking a three-dimensional arbitrary shaped star-domain,” Opt. Express 17(22), 20494–20501 (2009). [CrossRef] [PubMed]
  8. J. J. Zhang, Y. Luo, H. S. Chen, and B. I. Wu, “Cloak of arbitrary shape,” J. Opt. Soc. Am. B 25(11), 1776–1779 (2008). [CrossRef]
  9. H. Ma, S. B. Qu, Z. Xu, and J. F. Wang, “Numerical method for designing approximate cloaks with arbitrary shapes,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(3), 036608 (2008). [CrossRef] [PubMed]
  10. Q. Cheng, W. X. Jiang, and T. J. Cui, “Investigations of the electromagnetic properties of three-dimensional arbitrarily-shaped cloaks,” Prog. Electromagn. Res. 94, 105–117 (2009). [CrossRef]
  11. J. Hu, X. M. Zhou, and G. K. Hu, “Design method for electromagnetic cloak with arbitrary shapes based on Laplace’s equation,” Opt. Express 17(3), 1308–1320 (2009). [CrossRef] [PubMed]
  12. X. Chen, Y. Q. Fu, and N. C. Yuan, “Invisible cloak design with controlled constitutive parameters and arbitrary shaped boundaries through Helmholtz’s equation,” Opt. Express 17(5), 3581–3586 (2009). [CrossRef] [PubMed]
  13. J. J. Ma, X. Y. Cao, K. M. Yu, and T. Liu, “Determination the material parameters for arbitrary cloak based on Poisson's equation,” Prog. Electromagn. Res. M 9, 177–184 (2009). [CrossRef]
  14. W. Li, J. G. Guan, W. Wang, Z. G. Sun, and Z. Y. Fu, “A general cloak to shift the scattering of different objects,” J. Phys. D Appl. Phys. 43(24), 245102 (2010). [CrossRef]
  15. W. Li, J. G. Guan, Z. G. Sun, and W. Wang, “Shifting cloaks constructed with homogeneous materials,” Comput. Mater. Sci. 50(2), 607–611 (2010). [CrossRef]
  16. H. Y. Chen, X. Zhang, X. Luo, H. Ma, and C. T. Chan, “Reshaping the perfect electrical conductor cylinder arbitrarily,” New J. Phys. 10(11), 113016 (2008). [CrossRef]
  17. G. S. Yuan, X. C. Dong, Q. L. Deng, H. T. Gao, C. H. Liu, Y. G. Lu, and C. L. Du, “A design method to change the effective shape of scattering cross section for PEC objects based on transformation optics,” Opt. Express 18(6), 6327–6332 (2010). [CrossRef] [PubMed]
  18. A. Diatta, G. Dupont, S. Guenneau, and S. Enoch, “Broadband cloaking and mirages with flying carpets,” Opt. Express 18(11), 11537–11551 (2010). [CrossRef] [PubMed]
  19. A. Diatta and S. Guenneau, “Non-singular cloaks allow mimesis,” J. Opt. 13(2), 024012–024022 (2011). [CrossRef]
  20. C.-W. Qiu, A. Novitsky, and L. Gao, “Inverse design mechanism of cylindrical cloaks without knowledge of the required coordinate transformation,” J. Opt. Soc. Am. A 27(5), 1079–1082 (2010). [CrossRef] [PubMed]
  21. R. Courant, The Dirichlet Principle, Conformal Mapping and Minimal Surfaces (Interscience, 1950).
  22. A. Novitsky, C. W. Qiu, and S. Zouhdi, “Transformation-based spherical cloaks designed by an implicit transformation-independent method: theory and optimization,” New J. Phys. 11(11), 113001 (2009). [CrossRef]
  23. R. V. Kohn, H. Shen, M. S. Vogelius, and M. I. Weinstein, “Cloaking via change of variables in electric impedance tomography,” Inverse Probl. 24(1), 015016 (2008). [CrossRef]
  24. A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, “Full-wave invisibility of active devices at all frequencies,” Commun. Math. Phys. 275(3), 749–789 (2007). [CrossRef]
  25. M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations,” Photonics Nanostruct. Fund. Appl. 6, 89–95 (2008).
  26. C. F. Yang, J. J. Yang, M. Huang, J. H. Peng, and W. W. Niu, “Electromagnetic concentrators with arbitrary geometries based on Laplace’s equation,” J. Opt. Soc. Am. A 27(9), 1994–1998 (2010). [CrossRef] [PubMed]
  27. A. D. Yaghjian and S. Maci, “Alternative derivation of electromagnetic cloaks and concentrators,” New J. Phys. 10(11), 115022 (2008). [CrossRef]
  28. M. Machura and R. A. Sweet, “A survey of software for partial differential equations,” ACM Trans. Math. Softw. 6(4), 461–488 (1980). [CrossRef]
  29. J. P. Dowling and C. M. Bowden, “Anomalous index of refraction in photonic bandgap materials,” J. Mod. Opt. 41(2), 345–351 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited