OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 20 — Sep. 26, 2011
  • pp: 19775–19780

Low noise GHz passive harmonic mode-locking of soliton fiber laser using evanescent wave interaction with carbon nanotubes

Chang Su Jun, Ju Hee Im, Sang Hwa Yoo, Sun Young Choi, Fabian Rotermund, Dong-Il Yeom, and Byoung Yoon Kim  »View Author Affiliations

Optics Express, Vol. 19, Issue 20, pp. 19775-19780 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (988 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Passive harmonic mode-locking in soliton fiber laser is presented with excellent noise characteristics by employing a single-walled carbon nanotubes saturable absorber designed to interact with evanescent wave of the laser field. The 34th harmonic mode-locking pulses at 943.16 MHz repetition rate were stably generated with 18 mW output power, >50 dB side-mode suppression and −140 dB/Hz relative intensity noise. Soliton energy control with polarization controller further increased the harmonic order to 61st, 1.692 GHz, but with compromised performance. Scaling to higher-order harmonic mode-locking is discussed for practical application in optical communication system.

© 2011 OSA

OCIS Codes
(140.3510) Lasers and laser optics : Lasers, fiber
(140.4050) Lasers and laser optics : Mode-locked lasers
(160.4330) Materials : Nonlinear optical materials

ToC Category:
Lasers and Laser Optics

Original Manuscript: July 28, 2011
Revised Manuscript: September 5, 2011
Manuscript Accepted: September 11, 2011
Published: September 23, 2011

Chang Su Jun, Ju Hee Im, Sang Hwa Yoo, Sun Young Choi, Fabian Rotermund, Dong-Il Yeom, and Byoung Yoon Kim, "Low noise GHz passive harmonic mode-locking of soliton fiber laser using evanescent wave interaction with carbon nanotubes," Opt. Express 19, 19775-19780 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. V. Radushkevich and V. M. Lukyanovich, “O strukture ugleroda, obrazujucegosja pri termiceskom razlozenii okisi ugleroda na zeleznom kontakte,” Z. Fis. Chim. 26, 88–95 (1952) (“About the structure of carbon formed by thermal decomposition of carbon monoxide on iron substrate,” Journal of Physical Chemistry of Russia).
  2. S. Iijima, “Helical microtubules of graphite carbon,” Nature 354(6348), 56–58 (1991). [CrossRef]
  3. R. H. Baughman, A. A. Zakhidov, and W. A. de Heer, “Carbon nanotubes--the route toward applications,” Science 297(5582), 787–792 (2002). [CrossRef] [PubMed]
  4. P. M. Ajayan, “Nanotubes from Carbon,” Chem. Rev. 99(7), 1787–1800 (1999). [CrossRef] [PubMed]
  5. P. Avouris, M. Freitag, and V. Perebeinos, “Carbon-nanotube photonics and optoelectronics,” Nat. Photonics 2(6), 341–350 (2008). [CrossRef]
  6. M. S. Dresselhaus, G. Dresselhaus, and P. Avouris, eds., “Carbon Nanotubes: Synthesis, Structure, Properties, and Applications,” Series: Topics in Applied Physics Vol. 80, Springer (2001).
  7. P. Chen, X. Wu, X. Sun, J. Lin, W. Ji, and K. L. Tan, “Electronic structure and optical limiting behavior of carbon nanotubes,” Phys. Rev. Lett. 82(12), 2548–2551 (1999). [CrossRef]
  8. Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T.-M. Lu, G.-C. Wang, and X.-C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 μm,” Appl. Phys. Lett. 81(6), 975–977 (2002). [CrossRef]
  9. S. Y. Set, H. Yaguchi, M. Jablonski, Y. Tanaka, Y. Sakakibara, A. Rozhin, M. Tokumoto, H. Kataura, Y. chiba, and K. Kikuchi, in Proc. Optical Fiber Communication Conf. ’03, Atlanta, GA, p. FL2 (2003).
  10. W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, U. Griebner, V. Petrov, and F. Rotermund, “Mode-locked self-starting Cr:forsterite laser using a single-walled carbon nanotube saturable absorber,” Opt. Lett. 33(21), 2449–2451 (2008). [CrossRef] [PubMed]
  11. S. Kivistö, T. Hakulinen, A. Kaskela, B. Aitchison, D. P. Brown, A. G. Nasibulin, E. I. Kauppinen, A. Härkönen, and O. G. Okhotnikov, “Carbon nanotube films for ultrafast broadband technology,” Opt. Express 17(4), 2358–2363 (2009). [CrossRef] [PubMed]
  12. J. Wang, Y. Chen, and W. J. Blau, “Carbon nanotubes and nanotube composites for nonlinear optical devices,” J. Mater. Chem. 19(40), 7425–7443 (2009). [CrossRef]
  13. I. H. Baek, S. Y. Choi, H. W. Lee, W. B. Cho, V. Petrov, A. Agnesi, V. Pasiskevicius, D.-I. Yeom, K. Kim, and F. Rotermund, “Single-walled carbon nanotube saturable absorber assisted high-power mode-locking of a Ti:sapphire laser,” Opt. Express 19(8), 7833–7838 (2011). [CrossRef] [PubMed]
  14. K. Kieu and M. Mansuripur, “Femtosecond laser pulse generation with a fiber taper embedded in carbon nanotube/polymer composite,” Opt. Lett. 32(15), 2242–2244 (2007). [CrossRef] [PubMed]
  15. Y. W. Song, S. Yamashita, C. S. Goh, and S. Y. Set, “Carbon nanotube mode lockers with enhanced nonlinearity via evanescent field interaction in D-shaped fibers,” Opt. Lett. 32(2), 148–150 (2007). [CrossRef] [PubMed]
  16. S. Y. Choi, F. Rotermund, H. Jung, K. Oh, and D.-I. Yeom, “Femtosecond mode-locked fiber laser employing a hollow optical fiber filled with carbon nanotube dispersion as saturable absorber,” Opt. Express 17(24), 21788–21793 (2009). [CrossRef] [PubMed]
  17. J. H. Im, S. Y. Choi, F. Rotermund, and D.-I. Yeom, “All-fiber Er-doped dissipative soliton laser based on evanescent field interaction with carbon nanotube saturable absorber,” Opt. Express 18(21), 22141–22146 (2010). [CrossRef] [PubMed]
  18. R. A. Bergh, G. Kotler, and H. J. Shaw, “Single-mode fiber optic directional coupler,” Electron. Lett. 16(7), 260–261 (1980). [CrossRef]
  19. H. A. Haus, “Theory of modelocking with a fast saturable absorber,” J. Appl. Phys. 46(7), 3049–3058 (1975). [CrossRef]
  20. A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Passive harmonic mode locking of a fiber soliton ring laser,” Electron. Lett. 29(21), 1860–1861 (1993). [CrossRef]
  21. F. Li, P. K. A. Wai, and J. N. Kutz, “Geometrical description of the onset of multi-pulsing in mode-locked laser cavities,” J. Opt. Soc. Am. B 27(10), 2068–2077 (2010). [CrossRef]
  22. D. Panasenko, P. Polynkin, A. Polynkin, J. V. Moloney, M. Mansuripur, and N. Peyghambarian, “Er-Yb femtosecond ring fiber oscillator with 1.1W average power and GHz repetition rates,” IEEE Photon. Technol. Lett. 18(7), 853–855 (2006). [CrossRef]
  23. K. Jiang, S. Fu, P. Shum, and C. Lin, “A Wavelength-Switchable Passively Harmonically Mode-Locked Fiber Laser With Low Pumping Threshold Using Single-Walled Carbon Nanotubes,” IEEE Photon. Technol. Lett. 22, 11 (2010).
  24. J. N. Kutz, “Mode-locked soliton lasers,” SIAM Rev. 48(4), 629–678 (2006). [CrossRef]
  25. A. Komarov, H. Leblond, and F. Sanchez, “Multistability and hysteresis phenomena in passively mode-locked fiber lasers,” Phys. Rev. A 71(5), 053809 (2005). [CrossRef]
  26. D. Derickson, ed., “Fiber Optic Test and Measurement,” pp.601–604, Prentice Hall (1998).
  27. H.-K. Lee, J.-H. Moon, S.-G. Mun, K.-M. Choi, and C.-H. Lee, “Decision Threshold Control Method for the Optical Receiver of a WDM-PON,” J. Opt. Commun. Netw 2(6), 381–388 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited