OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 20 — Sep. 26, 2011
  • pp: 19781–19789

Quantitative single-exposure x-ray phase contrast imaging using a single attenuation grid

Kaye S. Morgan, David M. Paganin, and Karen K. W. Siu  »View Author Affiliations

Optics Express, Vol. 19, Issue 20, pp. 19781-19789 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (2114 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A single-exposure quantitative method of x-ray phase contrast imaging, suitable for animal in vivo observations, is described and shown experimentally both for a known static sample and an ex vivo biological airway. The ability to acquire the desired information within a single exposure is important for dynamic samples, as is sufficient sensitivity to reveal small variations in the composition or thickness of such a sample. This approach satisfies both these needs by analyzing how a reference grid pattern is deformed by the presence of the sample, similar to a Shack-Hartmann sensor. By resolving the shift of the pattern into horizontal and vertical components, a quantitative phase depth map is recovered, sensitive to both sharp edges as well as low phase gradients.

© 2011 OSA

OCIS Codes
(050.5080) Diffraction and gratings : Phase shift
(110.7440) Imaging systems : X-ray imaging
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(260.0260) Physical optics : Physical optics
(340.0340) X-ray optics : X-ray optics
(340.7440) X-ray optics : X-ray imaging

ToC Category:
X-ray Optics

Original Manuscript: August 8, 2011
Revised Manuscript: September 12, 2011
Manuscript Accepted: September 13, 2011
Published: September 23, 2011

Virtual Issues
Vol. 6, Iss. 10 Virtual Journal for Biomedical Optics

Kaye S. Morgan, David M. Paganin, and Karen K. W. Siu, "Quantitative single-exposure x-ray phase contrast imaging using a single attenuation grid," Opt. Express 19, 19781-19789 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66(12), 5486–5492 (1995). [CrossRef]
  2. P. Cloetens, R. Barrett, J. Baruchel, J. P. Guigay, and M. Schlenker, “Phase objects in synchrotron radiation hard x-ray imaging,” J. Phys. D Appl. Phys. 29(1), 133–146 (1996). [CrossRef]
  3. R. A. Lewis, “Medical phase contrast x-ray imaging: current status and future prospects,” Phys. Med. Biol. 49(16), 3573–3583 (2004). [CrossRef] [PubMed]
  4. T. E. Gureyev, S. C. Mayo, D. E. Myers, Ya. Nesterets, D. M. Paganin, A. Pogany, A. W. Stevenson, and S. W. Wilkins, “Refracting Röntgen’s rays: Propagation-based x-ray phase contrast for biomedical imaging,” J. Appl. Phys. 105(10), 102005 (2009). [CrossRef]
  5. A. Fouras, M. J. Kitchen, S. Dubsky, R. A. Lewis, S. B. Hooper, and K. Hourigan, “The past, present, and future of x-ray technology for in vivo imaging of function and form,” J. Appl. Phys. 105(10), 102009 (2009). [CrossRef]
  6. U. Bonse and M. Hart, “An x-ray interferometer,” Appl. Phys. Lett. 6(8), 155–156 (1965). [CrossRef]
  7. E. Förster, K. Goetz, and P. Zaumseil, “Double crystal diffractometry for the characterization of targets for laser fusion experiments,” Krist. Tech. 15(8), 937–945 (1980). [CrossRef]
  8. V. Ingal and E. Beliaevskaya, “X-ray plane-wave topography observation of the phase contrast from a non-crystalline object,” J. Phys. D Appl. Phys. 28(11), 2314–2317 (1995). [CrossRef]
  9. T. J. Davis, D. Gao, T. E. Gureyev, A. W. Stevenson, and S. W. Wilkins, “Phase-contrast imaging of weakly absorbing materials using hard x-rays,” Nature 373(6515), 595–598 (1995). [CrossRef]
  10. C. David, B. Nohammer, H. Solak, and E. Ziegler, “Differential x-ray phase contrast imaging using a shearing interferometer,” Appl. Phys. Lett. 81(17), 3287–3289 (2002). [CrossRef]
  11. A. Momose, W. Yashiro, Y. Takeda, Y. Suzuki, and T. Hattori, “Phase tomography by x-ray Talbot interferometry for biological imaging,” Jpn. J. Appl. Phys. 45(6A), 5254–5262 (2006). [CrossRef]
  12. F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources,” Nat. Phys. 2(4), 258–261 (2006). [CrossRef]
  13. D. Paganin, T. E. Gureyev, K. M. Pavlov, R. A. Lewis, and M. Kitchen, “Phase retrieval using coherent imaging systems with linear transfer functions,” Opt. Commun. 234(1-6), 87–105 (2004). [CrossRef]
  14. D. Briedis, K. K. W. Siu, D. M. Paganin, K. M. Pavlov, and R. A. Lewis, “Analyser-based mammography using single-image reconstruction,” Phys. Med. Biol. 50(15), 3599–3611 (2005). [CrossRef] [PubMed]
  15. K. K. W. Siu, M. J. Kitchen, K. M. Pavlov, J. E. Gillam, R. A. Lewis, K. Uesugi, and N. Yagi, “An improvement to the diffraction-enhanced imaging method that permits imaging of dynamical systems,” Nucl. Instrum. Methods Phys. Res. A 548(1-2), 169–174 (2005). [CrossRef]
  16. M. J. Kitchen, K. M. Pavlov, S. B. Hooper, D. J. Vine, K. K. W. Siu, M. J. Wallace, M. L. L. Siew, N. Yagi, K. Uesugi, and R. A. Lewis, “Simultaneous acquisition of dual analyser-based phase contrast X-ray images for small animal imaging,” Eur. J. Radiol. 68(3Suppl), S49–S53 (2008). [CrossRef] [PubMed]
  17. K. S. Morgan, D. M. Paganin, and K. K. W. Siu, “Quantitative x-ray phase-contrast imaging using a single grating of comparable pitch to sample feature size,” Opt. Lett. 36(1), 55–57 (2011). [CrossRef] [PubMed]
  18. M. R. Arnison, K. G. Larkin, C. J. R. Sheppard, N. I. Smith, and C. J. Cogswell, “Linear phase imaging using differential interference contrast microscopy,” J. Microsc. 214(1), 7–12 (2004). [CrossRef] [PubMed]
  19. C. Kottler, C. David, F. Pfeiffer, and O. Bunk, “A two-directional approach for grating based differential phase contrast imaging using hard x-rays,” Opt. Express 15(3), 1175–1181 (2007). [CrossRef] [PubMed]
  20. M. D. de Jonge, B. Hornberger, C. Holzner, D. Legnini, D. Paterson, I. McNulty, C. Jacobsen, and S. Vogt, “Quantitative phase imaging with a scanning transmission x-ray microscope,” Phys. Rev. Lett. 100(16), 163902 (2008). [CrossRef] [PubMed]
  21. J. Hartmann, “Bemerkungen über den Bau und die Justirung von Spektrographen,” Z. Instrumentenkd 20, 47 (1900).
  22. R. V. Shack and B. C. Platt, “Production and use of a lenticular Hartmann screen,” J. Opt. Soc. Am. 61, 656 (1971).
  23. V. Aksenov, V. Banakh, and O. Tikhomirova, “Potential and vortex features of optical speckle fields and visualization of wave-front singularities,” Appl. Opt. 37(21), 4536–4540 (1998). [CrossRef] [PubMed]
  24. R. G. Lane and M. Tallon, “Wave-front reconstruction using a Shack-Hartmann sensor,” Appl. Opt. 31(32), 6902–6908 (1992). [CrossRef] [PubMed]
  25. Y. Carmon and E. N. Ribak, “Phase retrieval by demodulation of a Hartmann-Shack sensor,” Opt. Commun. 215(4-6), 285–288 (2003). [CrossRef]
  26. S. C. Mayo and B. Sexton, “Refractive microlens array for wave-front analysis in the medium to hard x-ray range,” Opt. Lett. 29(8), 866–868 (2004). [CrossRef] [PubMed]
  27. P. Mercère, M. Idir, P. Zeitoun, X. Levecq, G. Dovillaire, S. Bucourt, D. Douillet, K. A. Goldberg, P. P. Naulleau, and S. Rekawa, “X-ray wavefront Hartmann Sensor,” AIP Conf. Proc. 705, 819–822 (2004). [CrossRef]
  28. C. D. Perciante and J. A. Ferrari, “Visualization of two-dimensional phase gradients by subtraction of a reference periodic pattern,” Appl. Opt. 39(13), 2081–2083 (2000). [CrossRef] [PubMed]
  29. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based tomography and interferometry,” J. Opt. Soc. Am. A 72(1), 156–160 (1982). [CrossRef]
  30. J. H. Massig, “Measurement of phase objects by simple means,” Appl. Opt. 38(19), 4103–4105 (1999). [CrossRef] [PubMed]
  31. J. H. Massig, “Deformation measurement on specular surfaces by simple means,” Opt. Eng. 40(10), 2315–2318 (2001). [CrossRef]
  32. P. Bon, G. Maucort, B. Wattellier, and S. Monneret, “Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells,” Opt. Express 17(15), 13080–13094 (2009). [CrossRef] [PubMed]
  33. H. H. Wen, E. E. Bennett, R. Kopace, A. F. Stein, and V. Pai, “Single-shot x-ray differential phase-contrast and diffraction imaging using two-dimensional transmission gratings,” Opt. Lett. 35(12), 1932–1934 (2010). [CrossRef] [PubMed]
  34. H. Itoh, K. Nagai, G. Sato, K. Yamaguchi, T. Nakamura, T. Kondoh, C. Ouchi, T. Teshima, Y. Setomoto, and T. Den, “Two-dimensional grating-based X-ray phase-contrast imaging using Fourier transform phase retrieval,” Opt. Express 19(4), 3339–3346 (2011). [CrossRef] [PubMed]
  35. Y. Liu, B. Chen, E. Li, J. Wang, A. Marcelli, S. Wilkins, H. Ming, Y. Tian, K. Nugent, P. Zhu, and Z. Wu, “Phase retrieval in x-ray imaging based on using structured illumination,” Phys. Rev. A 78(2), 023817 (2008). [CrossRef]
  36. D. N. Slatkin, P. Spanne, F. A. Dilmanian, and M. Sandborg, “Microbeam radiation therapy,” Med. Phys. 19(6), 1395–1400 (1992). [CrossRef] [PubMed]
  37. J. P. Lewis, “Fast template matching”, Vision Interface 95, Canadian Image Processing and Pattern Recognition Society, Quebec City, 120–123 (1995).
  38. D. M. Paganin, Coherent X-ray Optics, Oxford University Press, New York (2006).
  39. C. T. Chantler, K. Olsen, R. A. Dragoset, A. R. Kishore, S. A. Kotochigova, and D. S. Zucker, “X-ray form factor, attenuation and scattering tables”, http://www.nist.gov/pml/data/ffast/index.cfm , NIST (2003).
  40. D. W. Parsons, K. Morgan, M. Donnelley, A. Fouras, J. Crosbie, I. Williams, R. C. Boucher, K. Uesugi, N. Yagi, and K. K. W. Siu, “High-resolution visualization of airspace structures in intact mice via synchrotron phase-contrast X-ray imaging (PCXI),” J. Anat. 213(2), 217–227 (2008). [CrossRef] [PubMed]
  41. K. K. W. Siu, K. S. Morgan, D. M. Paganin, R. Boucher, K. Uesugi, N. Yagi, and D. W. Parsons, “Phase contrast X-ray imaging for the non-invasive detection of airway surfaces and lumen characteristics in mouse models of airway disease,” Eur. J. Radiol. 68(3Suppl), S22–S26 (2008). [CrossRef] [PubMed]
  42. M. Donnelley, K. K. W. Siu, K. S. Morgan, W. Skinner, Y. Suzuki, A. Takeuchi, K. Uesugi, N. Yagi, and D. W. Parsons, “A new technique to examine individual pollutant particle and fibre deposition and transit behaviour in live mouse trachea,” J. Synchrotron Radiat. 17(6), 719–729 (2010). [CrossRef] [PubMed]
  43. K. S. Morgan, D. M. Paganin, D. W. Parsons, M. Donnelley, N. Yagi, K. Uesugi, Y. Suzuki, A. Takeuchi, and K. K. W. Siu, “Optimising coherence properties for phase contrast x-ray imaging (PCXI) to reveal airway surface liquid (ASL) as an airway health measure,” IFMBE Proc. 25, 135–138 (2009). [CrossRef]
  44. A. M. Lale, J. D. T. Mason, and N. S. Jones, “Mucociliary transport and its assessment: a review,” Clin. Otolaryngol. Allied Sci. 23(5), 388–396 (1998). [CrossRef] [PubMed]
  45. M. R. Teague, “Deterministic phase retrieval: a Green’s function solution,” J. Opt. Soc. Am. 73(11), 1434–1441 (1983). [CrossRef]
  46. D. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins, “Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object,” J. Microsc. 206(1), 33–40 (2002). [CrossRef] [PubMed]
  47. K. S. Morgan, S. C. Irvine, Y. Suzuki, K. Uesugi, A. Takeuchi, D. M. Paganin, and K. K. W. Siu, “Measurement of hard x-ray coherence in the presence of a rotating random-phase-screen diffuser,” Opt. Commun. 283(2), 216–225 (2010). [CrossRef]
  48. S. C. Irvine, K. S. Morgan, Y. Suzuki, K. Uesugi, A. Takeuchi, D. M. Paganin, and K. K. W. Siu, “Assessment of the use of a diffuser in propagation-based x-ray phase contrast imaging,” Opt. Express 18(13), 13478–13491 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited