OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 21 — Oct. 10, 2011
  • pp: 19797–19812

Photo darkening of rare earth doped silica

Kent E. Mattsson  »View Author Affiliations

Optics Express, Vol. 19, Issue 21, pp. 19797-19812 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1478 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The photo darkening (PD) absorption spectra from unseeded amplifier operation (by 915 nm pumping) of ytterbium / aluminum and co-doped silica fibers is after prolonged operation observed to develop a characteristic line at 2.6 eV (477 nm). This line is proposed to be due to inter center excitation transfer from type II oxygen deficiency centers ODC(II) to Tm3+ trace impurities. The ODC(II) is proposed to be the result of a displacive transition of a 4-fold silica ring hosting two 3-fold silicon units that presents two non-bridging oxygen to Yb3+ (as part of its 6-fold coordination by oxygen). The displacive transition is initiated by a charge disproportionation process which leads to NBO transfer in forming dioxasilirane (2-fold coordinated silicon with two NBO attached) next to silylene (2-fold coordinated silicon with a lone electron pair). In collaboration with a valence electron of Yb3+ a new ½ / 1½ chemical bond is formed on dioxasilirane which comprises the PD color center for the visible and near-infrared. Difference in solid acidity of the silica material co-doped with Yb/Al and Yb/P may explain the observed difference in spectral shapes by change of bond order to the formed chemical bond.

© 2011 OSA

OCIS Codes
(060.2290) Fiber optics and optical communications : Fiber materials
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: July 11, 2011
Revised Manuscript: September 2, 2011
Manuscript Accepted: September 2, 2011
Published: September 26, 2011

Kent E. Mattsson, "Photo darkening of rare earth doped silica," Opt. Express 19, 19797-19812 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. J. Koponen, M. J. Söderlund, H. J. Hoffman, and S. K. T. Tammela, “Measuring photodarkening from single-mode ytterbium doped silica fibers,” Opt. Express 14(24), 11539–11544 (2006). [CrossRef] [PubMed]
  2. S. Jetschke, S. Unger, U. Röpke, and J. Kirchhof, “Photodarkening in Yb doped fibers: experimental evidence of equilibrium states depending on the pump power,” Opt. Express 15(22), 14838–14843 (2007). [CrossRef] [PubMed]
  3. S. Jetschke, S. Unger, A. Schwuchow, M. Leich, and J. Kirchhof, “Efficient Yb laser fibers with low photodarkening by optimization of the core composition,” Opt. Express 16(20), 15540–15545 (2008). [CrossRef] [PubMed]
  4. S. Yoo, C. Basu, A. J. Boyland, C. Sones, J. Nilsson, J. K. Sahu, and D. Payne, “Photodarkening in Yb-doped aluminosilicate fibers induced by 488 nm irradiation,” Opt. Lett. 32(12), 1626–1628 (2007). [CrossRef] [PubMed]
  5. M. Engholm and L. Norin, “Preventing photodarkening in ytterbium-doped high power fiber lasers; correlation to the UV-transparency of the core glass,” Opt. Express 16(2), 1260–1268 (2008). [CrossRef] [PubMed]
  6. J. Jasapara, M. Andrejco, D. DiGiovanni, and R. Windeler, "Effect of heat and H2 gas on the photo-darkening of Yb+3 fibers," in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2006), paper CTuQ5.
  7. L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239(1-3), 16–48 (1998). [CrossRef]
  8. D. L. Griscom, “Trapped-electron centers in pure and doped glassy silica: A review and synthesis,” J. Non-Cryst. Solids 357(8-9), 1945–1962 (2011). [CrossRef]
  9. D. P. Partlow and A. J. Cohen, “Optical studies of biaxial Al-related color centers in smoky quartz,” Am. Mineralogist 71, 589–598 (1986).
  10. F. Mady, M. Benabdesselam, and W. Blanc, “Thermoluminescence characterization of traps involved in the photodarkening of ytterbium-doped silica fibers,” Opt. Lett. 35(21), 3541–3543 (2010). [CrossRef] [PubMed]
  11. C. G. Carlson, K. E. Keister, P. D. Dragic, A. Croteau, and J. G. Eden, “Photoexcitation of Yb-doped aluminosilicate fibers at 250 nm: evidence for excitation transfer from oxygen deficiency centers to Yb3+,” J. Opt. Soc. Am. B 27(10), 2087–2094 (2010). [CrossRef]
  12. M. J. Söderlund, J. J. Montiel i Ponsoda, J. P. Koplow, and S. Honkanen, “Heat-induced darkening and spectral broadening in photodarkened ytterbium-doped fiber under thermal cycling,” Opt. Express 17(12), 9940–9946 (2009). [CrossRef] [PubMed]
  13. J. K. Sahu, S. Yoo, A. J. Boyland, C. Basu, M. P. Kalita, A. Webb, C. L. Sones, J. Nilsson, and D. N. Payne, “488 nm irradiation induced photodarkening study of Yb doped aluminosilicate and phosphosilicate fibers,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper JTuA27.
  14. Y. W. Lee, S. Sinha, M. J. F. Digonnet, R. L. Byer, and S. Jiang, “Measurement of high photodarkening resistance in heavily Yb3+-doped phosphate fibres,” Electron. Lett. 44(1), 14–16 (2008). [CrossRef]
  15. M. Engholm, P. Jelger, F. Laurell, and L. Norin, “Improved photodarkening resistivity in ytterbium-doped fiber lasers by cerium codoping,” Opt. Lett. 34(8), 1285–1287 (2009). [CrossRef] [PubMed]
  16. K. E. Mattsson, “Low photo darkening single mode RMO fiber,” Opt. Express 17(20), 17855–17861 (2009). [CrossRef] [PubMed]
  17. K. Bogumil, J. Orphal, and J. P. Burrows, “Temperature dependent absorption cross sections of O3, NO2, and other atmospheric trace gases measured with the SCIAMACHY spectrometer,” Proceeding Envisat Symposium Goteborg, Sweden (2000), http://earth.esa.int/pub/ESA DOC/gothenburg/099bog
  18. B. Schaudel, P. Goldner, M. Prassas, and F. Auzel, “Cooperative luminescence as a probe of clustering in Yb3+ doped glasses,” J. Alloy. Comp. 300–301(1-2), 443–449 (2000). [CrossRef]
  19. S. Jetschke, S. Unger, A. Schwuchow, M. Leich, V. Reichel, and J. Kirchhof, “Photodarkening in Yb-doped silica fibers: influence of the atmosphere during perform collapsing,” Proc. SPIE 6873, 68731G, 68731G-10 (2008). [CrossRef]
  20. L. Skuja, “Direct singlet-to-triplet optical absorption and luminescence excitation band of the twofold-coordinated silicon center in oxygen-deficient glassy SiO2,” J. Non-Cryst. Solids 167(3), 229–238 (1994). [CrossRef]
  21. J. T. Fournier and R. H. Bartram, “Inhomogeneous broadening of the optical spectra of Yb3+ in phosphate glass,” J. Phys. Chem. Solids 31(12), 2615–2624 (1970). [CrossRef]
  22. L. Pauling, “The nature of silicon-oxygen bonds,” Am. Mineral. 65, 321–323 (1980).
  23. V. O. Sokolov and V. B. Sulimov, “Threefold coordinated oxygen atom in silica glass,” J. Non-Cryst. Solids 217(2-3), 167–172 (1997). [CrossRef]
  24. S. Jetschke, M. Leich, S. Unger, A. Schwuchow, and J. Kirchhof, “Influence of Tm- or Er-codoping on the photodarkening kinetics in Yb fibers,” Opt. Express 19(15), 14473–14478 (2011). [CrossRef]
  25. R. Peretti, A.-M. Jurdyc, B. Jacquier, C. Gonnet, A. Pastouret, E. Burov, and O. Cavani, “How do traces of thulium explain photodarkening in Yb doped fibers?” Opt. Express 18(19), 20455–20460 (2010). [CrossRef] [PubMed]
  26. K. C. Snyder and W. B. Fowler, “Oxygen vacancy in α -quartz: a possible bi- and metastable defect,” Phys. Rev. B Condens. Matter 48(18), 13238–13243 (1993). [CrossRef] [PubMed]
  27. F. L. Galeener, “Planar rings in vitreous silica,” J. Non-Cryst. Solids 49(1-3), 53–62 (1982). [CrossRef]
  28. L. Giordano, P. V. Sushko, G. Pacchioni, and A. L. Shluger, “Electron trapping at point defects on hydroxylated silica surfaces,” Phys. Rev. Lett. 99(13), 136801 (2007). [CrossRef] [PubMed]
  29. K. Awazu and H. Kawazoe, “O2 molecules dissolved in synthetic silica glasses and their photochemical reactions induced by ArF excimer laser radiation,” J. Appl. Phys. 68(7), 3584–3591 (1990). [CrossRef]
  30. C. M. Carbonaro, P. C. Ricci, and A. Anedda, “Thermal quenching properties of ultraviolet emitting centers in mesoporous silica,” Phys. Rev. B 76(12), 125431 (2007). [CrossRef]
  31. V. A. Radtsig and I. N. Senchenya, “Hydrogenation of the silanone groups (≡Si-O)2Si=O. Experimental and quantum-chemical studies,” Russ. Chem. Bull. 45(8), 1849–1856 (1996). [CrossRef]
  32. P. H. Krupenie, “The spectrum of molecular oxygen,” J. Phys. Chem. Ref. Data 1(2), 423–534 (1972). [CrossRef]
  33. J. Rolfe, F. R. Lipsett, and W. J. King, “Optical absorption and fluorescence of oxygen in alkali halide crystals,” Phys. Rev. 123(2), 447–454 (1961). [CrossRef]
  34. R. D. Harcourt, “Pauling “3-electron bonds,” “increased-valence,” and 6-electron 4-center bonding,” J. Am. Chem. Soc. 102(16), 5195–5201 (1980). [CrossRef]
  35. G. Busca, “The surface acidity of solid oxides and its characterization by IR spectroscopic methods. An attempt at systematization,” Phys. Chem. Chem. Phys. 1(5), 723–736 (1999). [CrossRef]
  36. B. Morasse, S. Chatigny, E. Gagnon, C. Hovington, J.-P Martin, and J.-P. de Sandro, “Low photodarkening single cladding ytterbium fibre amplifier,” Proc. SPIE,  6453, 6453OH (2007)
  37. K. Arai, H. Namikawa, K. Kumata, T. Honda, T. Ishii, and T. Handa, “Aluminum or phosphorus co-doping effects on the fluorescence and structural properties of neodymium-doped silica glass,” J. Appl. Phys. 59(10), 3430–3436 (1986). [CrossRef]
  38. A. Saitoh, S. Matsuishi, M. Oto, T. Miura, M. Hirano, and H. Hosono, “Elucidation of coordination structure around Ce3+ in doped SiO2 glasses using pulsed electron paramagnetic resonance: effect of phosphorus, boron, and phosphorus-boron codoping,” Phys. Rev. B 72(21), 212101 (2005). [CrossRef]
  39. W. J. Miniscalco, “Erbium-doped glasses for fiber amplifiers for 1500 nm,” J. Lightwave Technol. 9(2), 234–250 (1991). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited