OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 21 — Oct. 10, 2011
  • pp: 19875–19885

Numerical modeling of alkali vapor lasers

Hong Shu, Ying Chen, Michael Bass, J. Fernando Monjardin, and Jochen Deile  »View Author Affiliations

Optics Express, Vol. 19, Issue 21, pp. 19875-19885 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1030 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Detailed numerical analyses are presented of a continuous wave (cw), single spatial mode alkali vapor laser pumped by a diffraction-limited Ti: Sapphire laser. These analyses provide insight into the operation of alkali vapor lasers to aid in the development of high power, diode laser pumped alkali vapor lasers. It is demonstrated that in the laser considered the laser spatial pattern is significantly changed after each pass through the gain medium, and the laser spatial pattern in steady state operation is also very different from that of the passive cavity mode. According to the calculation, lasing significantly improves the pump absorption efficiency and changes the absorbed pump distribution. The effect of varying the transverse size of the pumped region is also analyzed and an optimum pump beam waist radius is demonstrated. In addition, the shift of the pump beam waist location is also studied. The computation method and its convergence behavior are also described in detail.

© 2011 OSA

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(140.1340) Lasers and laser optics : Atomic gas lasers
(140.3410) Lasers and laser optics : Laser resonators
(140.3430) Lasers and laser optics : Laser theory

ToC Category:
Lasers and Laser Optics

Original Manuscript: August 3, 2011
Revised Manuscript: September 2, 2011
Manuscript Accepted: September 3, 2011
Published: September 26, 2011

Hong Shu, Ying Chen, Michael Bass, J. Fernando Monjardin, and Jochen Deile, "Numerical modeling of alkali vapor lasers," Opt. Express 19, 19875-19885 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. J. Beach, W. K. Krupke, V. K. Kanz, S. A. Payne, M. A. Dubinskii, and L. D. Merkle, “End-pumped continuous-wave alkali vapor lasers: experiment, model, and power scaling,” J. Opt. Soc. Am. B 21(12), 2151–2163 (2004). [CrossRef]
  2. W. F. Krupke, R. J. Beach, V. K. Kanz, and S. A. Payne, “Resonance transition 795-nm rubidium laser,” Opt. Lett. 28(23), 2336–2338 (2003). [CrossRef] [PubMed]
  3. B. V. Zhdanov, T. Ehrenreich, and R. J. Knize, “Highly efficient optically pumped cesium vapor laser,” Opt. Commun. 260(2), 696–698 (2006). [CrossRef]
  4. B. V. Zhdanov and R. J. Knize, “Diode-pumped 10 W continuous wave cesium laser,” Opt. Lett. 32(15), 2167–2169 (2007). [CrossRef] [PubMed]
  5. S. S. Q. Wu, T. F. Soules, R. H. Page, S. C. Mitchell, V. K. Kanz, and R. J. Beach, “Hydrocarbon-free resonance transition 795-nm rubidium laser,” Opt. Lett. 32(16), 2423–2425 (2007). [CrossRef] [PubMed]
  6. A. Gourevitch, G. Venus, V. Smirnov, D. A. Hostutler, and L. Glebov, “Continuous wave, 30 W laser-diode bar with 10 GHz linewidth for Rb laser pumping,” Opt. Lett. 33(7), 702–704 (2008). [CrossRef] [PubMed]
  7. H. Shu and M. Bass, “Three-dimensional computer model for simulating realistic solid-state lasers,” Appl. Opt. 46(23), 5687–5697 (2007). [CrossRef] [PubMed]
  8. H. Shu, Analytic and numeric modeling of diode laser pumped Yb:YAG laser oscillators and amplifiers, Ph.D dissertation (University of Central Florida, 2003).
  9. W. P. Risk, “Modeling of longitudinally pumped solid-state lasers exhibiting reabsorption losses,” J. Opt. Soc. Am. B 5(7), 1412–1423 (1988). [CrossRef]
  10. T. Y. Fan and R. L. Byer, “Modeling and CW Operation of a Quasi-Three-Level 946 nm Nd: YAG Laser,” IEEE J. Quantum Electron. 23(5), 605–612 (1987). [CrossRef]
  11. W. Koechner, Solid-State Laser Engineering (Springer, 1999).
  12. W. F. Krupke and L. L. Chase, “Ground-state depleted solid-state lasers: principles, characteristics and scaling,” Opt. Quantum Electron. 22(S1), S1–S22 (1990). [CrossRef]
  13. F. Sanchez, M. Brunel, and K. Ait-Ameur, “Pump-saturation effects in end-pumped solid-state lasers,” J. Opt. Soc. Am. B 15(9), 2390–2394 (1998). [CrossRef]
  14. Y. Sato and T. Taira, “Saturation Factors of Pump Absorption in Solid-State Lasers,” IEEE J. Quantum Electron. 40(3), 270–280 (2004). [CrossRef]
  15. Z. Konefał, “Observation of collision induced processes in rubidium-ethane vapour,” Opt. Commun. 164(1-3), 95–105 (1999). [CrossRef]
  16. A. E. Siegman, “Gain-guided, index-antiguided fiber lasers,” J. Opt. Soc. Am. B 24(8), 1677–1682 (2007). [CrossRef]
  17. Y. Chen, T. McComb, V. Sudesh, M. Richardson, and M. Bass, “Very large-core, single-mode, gain-guided, index-antiguided fiber lasers,” Opt. Lett. 32(17), 2505–2507 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited