OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 21 — Oct. 10, 2011
  • pp: 19907–19918

Spatial light interference tomography (SLIT)

Zhuo Wang, Daniel L. Marks, Paul Scott Carney, Larry J. Millet, Martha U. Gillette, Agustin Mihi, Paul V. Braun, Zhen Shen, Supriya G. Prasanth, and Gabriel Popescu  »View Author Affiliations

Optics Express, Vol. 19, Issue 21, pp. 19907-19918 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1618 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present spatial light interference tomography (SLIT), a label-free method for 3D imaging of transparent structures such as live cells. SLIT uses the principle of interferometric imaging with broadband fields and combines the optical gating due to the micron-scale coherence length with that of the high numerical aperture objective lens. Measuring the phase shift map associated with the object as it is translated through focus provides full information about the 3D distribution associated with the refractive index. Using a reconstruction algorithm based on the Born approximation, we show that the sample structure may be recovered via a 3D, complex field deconvolution. We illustrate the method with reconstructed tomographic refractive index distributions of microspheres, photonic crystals, and unstained living cells.

© 2011 OSA

OCIS Codes
(180.6900) Microscopy : Three-dimensional microscopy
(290.3200) Scattering : Inverse scattering

ToC Category:

Original Manuscript: June 7, 2011
Revised Manuscript: September 14, 2011
Manuscript Accepted: September 16, 2011
Published: September 27, 2011

Virtual Issues
Vol. 6, Iss. 11 Virtual Journal for Biomedical Optics

Zhuo Wang, Daniel L. Marks, Paul Scott Carney, Larry J. Millet, Martha U. Gillette, Agustin Mihi, Paul V. Braun, Zhen Shen, Supriya G. Prasanth, and Gabriel Popescu, "Spatial light interference tomography (SLIT)," Opt. Express 19, 19907-19918 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. B. Pawley, Handbook of biological confocal microscopy (Springer, New York, 2006).
  2. J. G. McNally, T. Karpova, J. Cooper, and J. A. Conchello, “Three-dimensional imaging by deconvolution microscopy,” Methods 19(3), 373–385 (1999). [CrossRef] [PubMed]
  3. G. E. Bacon, X-ray and neutron diffraction (Pergamon, 1966).
  4. J. D. Watson and F. H. C. Crick, “Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid,” Nature 171(4356), 737–738 (1953). [CrossRef] [PubMed]
  5. N. Ban, P. Nissen, J. Hansen, P. B. Moore, and T. A. Steitz, “The complete atomic structure of the large ribosomal subunit at 2.4 A resolution,” Science 289(5481), 905–920 (2000). [CrossRef] [PubMed]
  6. E. Wolf, “History and Solution of the Phase Problem in the Theory of Structure Determination of Crystals from X-Ray Diffraction Measurements,” in Advances in Imaging and electron physics, P. W. E. Hawkes, ed. (Academic Press, San Diego, 2011).
  7. D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948). [CrossRef] [PubMed]
  8. P. Hariharan, Basics of holography (Cambridge University Press, Cambridge, UK; New York, NY, 2002).
  9. E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun. 1(4), 153–156 (1969). [CrossRef]
  10. M. Debailleul, V. Georges, B. Simon, R. Morin, and O. Haeberlé, “High-resolution three-dimensional tomographic diffractive microscopy of transparent inorganic and biological samples,” Opt. Lett. 34(1), 79–81 (2009). [CrossRef] [PubMed]
  11. G. N. Vishnyakov, G. G. Levin, V. L. Minaev, V. V. Pickalov, and A. V. Likhachev, “Tomographic Interference Microscopy of Living Cells,” Microscopy and Analysis 18, 15–17 (2004).
  12. F. Montfort, T. Colomb, F. Charrière, J. Kühn, P. Marquet, E. Cuche, S. Herminjard, and C. Depeursinge, “Submicrometer optical tomography by multiple-wavelength digital holographic microscopy,” Appl. Opt. 45(32), 8209–8217 (2006). [CrossRef] [PubMed]
  13. J. Kühn, F. Montfort, T. Colomb, B. Rappaz, C. Moratal, N. Pavillon, P. Marquet, and C. Depeursinge, “Submicrometer tomography of cells by multiple-wavelength digital holographic microscopy in reflection,” Opt. Lett. 34(5), 653–655 (2009). [CrossRef] [PubMed]
  14. D. Hillmann, C. Lührs, T. Bonin, P. Koch, and G. Hüttmann, “Holoscopy--holographic optical coherence tomography,” Opt. Lett. 36(13), 2390–2392 (2011). [CrossRef] [PubMed]
  15. F. Charrière, A. Marian, T. Colomb, P. Marquet, and C. Depeursinge, “Amplitude point-spread function measurement of high-NA microscope objectives by digital holographic microscopy,” Opt. Lett. 32(16), 2456–2458 (2007). [CrossRef] [PubMed]
  16. A. Marian, F. Charrière, T. Colomb, F. Montfort, J. Kühn, P. Marquet, and C. Depeursinge, “On the complex three-dimensional amplitude point spread function of lenses and microscope objectives: theoretical aspects, simulations and measurements by digital holography,” J. Microsc. 225(Pt 2), 156–169 (2007). [CrossRef] [PubMed]
  17. H. Ding and G. Popescu, “Coherent light imaging and scattering for biological investigations,” in Coherent light microscopy, P. Ferraro, A. Wax, and Z. Zalevsky, eds. (Springer, Berlin Heidelberg, 2011), pp. 229–265.
  18. G. Popescu, “Quantitative phase imaging of nanoscale cell structure and dynamics,” in Methods in Cell Biology, P. J. Bhanu, ed. (Elsevier, 2008), p. 87.
  19. C. Depeursinge, “Digital Holography Applied to Microscopy ” in Digital Holography and Three-Dimensional Display, T.-C. Poon, ed. (Springer US, 2006), p. 98.
  20. B. Q. Chen and J. J. Stamnes, “Validity of diffraction tomography based on the first born and the first rytov approximations,” Appl. Opt. 37(14), 2996–3006 (1998). [CrossRef] [PubMed]
  21. G. Gbur and E. Wolf, “Relation between computed tomography and diffraction tomography,” J. Opt. Soc. Am. A 18(9), 2132–2137 (2001). [CrossRef] [PubMed]
  22. P. S. Carney, E. Wolf, and G. S. Agarwal, “Diffraction tomography using power extinction measurements,” J. Opt. Soc. Am. A 16(11), 2643–2648 (1999). [CrossRef]
  23. V. Lauer, “New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope,” J. Microsc. 205(Pt 2), 165–176 (2002). [CrossRef] [PubMed]
  24. A. M. Zysk, J. J. Reynolds, D. L. Marks, P. S. Carney, and S. A. Boppart, “Projected index computed tomography,” Opt. Lett. 28(9), 701–703 (2003). [CrossRef] [PubMed]
  25. F. Charrière, N. Pavillon, T. Colomb, C. Depeursinge, T. J. Heger, E. A. D. Mitchell, P. Marquet, and B. Rappaz, “Living specimen tomography by digital holographic microscopy: morphometry of testate amoeba,” Opt. Express 14(16), 7005–7013 (2006). [CrossRef] [PubMed]
  26. F. Charrière, A. Marian, F. Montfort, J. Kuehn, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, “Cell refractive index tomography by digital holographic microscopy,” Opt. Lett. 31(2), 178–180 (2006). [CrossRef] [PubMed]
  27. W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007). [CrossRef] [PubMed]
  28. W. S. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Extended depth of focus in tomographic phase microscopy using a propagation algorithm,” Opt. Lett. 33(2), 171–173 (2008). [CrossRef] [PubMed]
  29. Z. Wang, L. J. Millet, M. Mir, H. Ding, S. Unarunotai, J. A. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express 19(2), 1016–1026 (2011). [CrossRef] [PubMed]
  30. Z. Wang and G. Popescu, “Quantitative phase imaging with broadband fields,” Appl. Phys. Lett. 96(5), 051117 (2010). [CrossRef]
  31. M. Born and E. Wolf, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light (Cambridge University Press, Cambridge; New York, 1999).
  32. R. P. Dougherty, “Extensions of DAMAS and Benefits and Limitations of Deconvolution in Beamforming,” 11th AIAA/CEAS Aeroacoustics Conference (26th AIAA Aeroacoustics Conference) AIAA, 2005–2961 (2005).
  33. P. A. Midgley and M. Weyland, “3D electron microscopy in the physical sciences: the development of Z-contrast and EFTEM tomography,” Ultramicroscopy 96(3-4), 413–431 (2003). [CrossRef] [PubMed]
  34. F. Zernike, “How I discovered phase contrast,” Science 121(3141), 345–349 (1955). [CrossRef] [PubMed]
  35. N. Lue, G. Popescu, T. Ikeda, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Live cell refractometry using microfluidic devices,” Opt. Lett. 31(18), 2759–2761 (2006). [CrossRef] [PubMed]
  36. B. Lillis, M. Manning, H. Berney, E. Hurley, A. Mathewson, and M. M. Sheehan, “Dual polarisation interferometry characterisation of DNA immobilisation and hybridisation detection on a silanised support,” Biosens. Bioelectron. 21(8), 1459–1467 (2006). [CrossRef] [PubMed]
  37. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  38. G. Popescu, Y. Park, N. Lue, C. Best-Popescu, L. Deflores, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Optical imaging of cell mass and growth dynamics,” Am. J. Physiol. Cell Physiol. 295(2), C538–C544 (2008). [CrossRef] [PubMed]
  39. H. F. Ding and G. Popescu, “Instantaneous spatial light interference microscopy,” Opt. Express 18(2), 1569–1575 (2010). [CrossRef] [PubMed]
  40. L. J. Millet, M. E. Stewart, J. V. Sweedler, R. G. Nuzzo, and M. U. Gillette, “Microfluidic devices for culturing primary mammalian neurons at low densities,” Lab Chip 7(8), 987–994 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (230 KB)     
» Media 2: MOV (7884 KB)     
» Media 3: MOV (1794 KB)     
» Media 4: MOV (7780 KB)     
» Media 5: MOV (4430 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited