OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 21 — Oct. 10, 2011
  • pp: 19948–19954

Birefringent photonic crystal fiber coils and their application to transverse displacement sensing

Chen-feng Fan, Chih-lun Chiang, and Chin-ping Yu  »View Author Affiliations

Optics Express, Vol. 19, Issue 21, pp. 19948-19954 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (918 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have experimentally investigated the birefringent properties of photonic crystal fiber (PCF) coils in cooperation with a Sagnac loop interferometer. By reducing the bending radius of the PCF coils, very clear interference patterns can be observed for the bending-induced stress effect. Increasing the fiber turns can result in more obvious interference patterns with smaller fringe spacing but has no contribution to the increment of the birefringence value. The fabricated PCF coil is employed in the transverse displacement sensing. Very high sensing sensitivity of 90.4 nm/mm can be achieved due to the large displacement-induced bending radius variations.

© 2011 OSA

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(230.2285) Optical devices : Fiber devices and optical amplifiers
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: August 2, 2011
Revised Manuscript: September 5, 2011
Manuscript Accepted: September 5, 2011
Published: September 27, 2011

Chen-feng Fan, Chih-lun Chiang, and Chin-ping Yu, "Birefringent photonic crystal fiber coils and their application to transverse displacement sensing," Opt. Express 19, 19948-19954 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Kumar and R. K. Varshney, “Propagation characteristics of dual-mode elliptical-core optical fibers,” Opt. Lett. 14(15), 817–819 (1989). [CrossRef] [PubMed]
  2. J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4(8), 1071–1089 (1986). [CrossRef]
  3. P. St. J. Russell, “Photonic-Crystal Fibers,” J. Lightwave Technol. 24(12), 4729–4749 (2006). [CrossRef]
  4. A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett. 25(18), 1325–1327 (2000). [CrossRef] [PubMed]
  5. T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13(6), 588–590 (2001). [CrossRef]
  6. H. Y. Fu, H. Y. Tam, L.-Y. Shao, X. Dong, P. K. A. Wai, C. Lu, and S. K. Khijwania, “Pressure sensor realized with polarization-maintaining photonic crystal fiber-based Sagnac interferometer,” Appl. Opt. 47(15), 2835–2839 (2008). [CrossRef] [PubMed]
  7. W. Eickhoff, “Temperature sensing by mode-mode interference in birefringent optical fibers,” Opt. Lett. 6(4), 204–206 (1981). [CrossRef] [PubMed]
  8. F. C. Fávero, S. M. M. Quintero, C. Martelli, A. M. B. Braga, V. V. Silva, I. C. S. Carvalho, R. W. A. Llerena, and L. C. G. Valente, “Hydrostatic pressure sensing with high birefringence photonic crystal fibers,” Sensors (Basel Switzerland) 10(11), 9698–9711 (2010). [CrossRef]
  9. O. Frazão, J. M. Baptista, and J. L. Santos, “Temperature-independent strain sensor based on a Hi-Bi photonic crystal fiber loop mirror,” IEEE Sens. J. 7(10), 1453–1455 (2007). [CrossRef]
  10. O. Frazão, C. Jesus, J. M. Baptista, J. L. Santos, and P. Roy, “Fiber-optic interferometric torsion sensor based on a two-LP-mode operation in birefringent fiber,” IEEE Photon. Technol. Lett. 21(17), 1277–1279 (2009). [CrossRef]
  11. R. Ulrich, S. C. Rashleigh, and W. Eickhoff, “Bending-induced birefringence in single-mode fibers,” Opt. Lett. 5(6), 273–275 (1980). [CrossRef] [PubMed]
  12. S. C. Rashleigh and R. Ulrich, “High birefringence in tension-coiled single-mode fibers,” Opt. Lett. 5(8), 354–356 (1980). [CrossRef] [PubMed]
  13. C. D. Perciante and J. A. Ferrari, “Cancellation of bending-induced birefringence in single-mode fibers: application to faraday sensors,” Appl. Opt. 45(9), 1951–1956 (2006). [CrossRef] [PubMed]
  14. J. Scheuer, “Fiber microcoil optical gyroscope,” Opt. Lett. 34(11), 1630–1632 (2009). [CrossRef] [PubMed]
  15. M. Sumetsky, “Optical microfiber coil delay line,” Opt. Express 17(9), 7196–7205 (2009). [CrossRef] [PubMed]
  16. F. Xu, P. Horak, and G. Brambilla, “Optical microfiber coil resonator refractometric sensor,” Opt. Express 15(12), 7888–7893 (2007). [CrossRef] [PubMed]
  17. M. Sumetsky, Y. Dulashko, and S. Ghalmi, “Fabrication of miniature optical fiber and microfiber coils,” Opt. Lasers Eng. 48(3), 272–275 (2010). [CrossRef]
  18. A. Bertholds and R. Dändliker, “High-resolution photoelastic pressure sensor using low-birefringence fiber,” Appl. Opt. 25(3), 340–343 (1986). [CrossRef] [PubMed]
  19. K. Bohnert, P. Gabus, J. Nehring, and H. Brandle, “Temperature and Vibration Insensitive Fiber-Optic Current Sensor,” J. Lightwave Technol. 20(2), 267–276 (2002). [CrossRef]
  20. D. Tang, A. H. Rose, G. W. Day, and S. M. Etzel, “Annealing of linear birefringence in single-mode fiber coils: Applications to optical fiber current sensors,” J. Lightwave Technol. 9(8), 1031–1037 (1991). [CrossRef]
  21. T. Sørensen, J. Broeng, A. Bjarklev, E. Knudsen, and S. E. Barkou Libori, “Macro-bending loss properties of photonic crystal fibre,” Electron. Lett. 37(5), 287–289 (2001). [CrossRef]
  22. M. Nielsen, N. Mortensen, M. Albertsen, J. Folkenberg, A. Bjarklev, and D. Bonacinni, “Predicting macrobending loss for large-mode area photonic crystal fibers,” Opt. Express 12(8), 1775–1779 (2004). [CrossRef] [PubMed]
  23. H. Zhang, B. Liu, Z. Wang, J. Luo, S. Wang, C. Jia, and X. Ma, “Temperature-insensitive displacement sensor based on high-birefringence photonic crystal fiber loop mirror,” Opt. Appl. 40(1), 209–217 (2010).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited