OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 21 — Oct. 10, 2011
  • pp: 19955–19966

Soliton-self compression in highly nonlinear chalcogenide photonic nanowires with ultralow pulse energy

Amine Ben Salem, Rim Cherif, and Mourad Zghal  »View Author Affiliations


Optics Express, Vol. 19, Issue 21, pp. 19955-19966 (2011)
http://dx.doi.org/10.1364/OE.19.019955


View Full Text Article

Enhanced HTML    Acrobat PDF (1244 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We design As2Se3 and As2S3 chalcogenide photonic nanowires to optimize the soliton self-compression with short distances and ultralow input pulse energy. We numerically demonstrate the generation of single optical cycle in an As2S3 photonic nanowire: a 5.07 fs compressed pulse is obtained starting from 250 fs input pulse with 50 pJ in 0.84 mm-long As2S3 nanowire. Taking into account the high two photon absorption (TPA) coefficient in the As2Se3 glass, accurate modeling shows the compression of 250 fs down to 25.4 fs in 2.1 mm-long nanowire and with 10 pJ input pulse energy.

© 2011 OSA

OCIS Codes
(160.4330) Materials : Nonlinear optical materials
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(320.5520) Ultrafast optics : Pulse compression
(320.7140) Ultrafast optics : Ultrafast processes in fibers
(320.6629) Ultrafast optics : Supercontinuum generation

ToC Category:
Nonlinear Optics

History
Original Manuscript: August 10, 2011
Revised Manuscript: September 16, 2011
Manuscript Accepted: September 20, 2011
Published: September 27, 2011

Citation
Amine Ben Salem, Rim Cherif, and Mourad Zghal, "Soliton-self compression in highly nonlinear chalcogenide photonic nanowires with ultralow pulse energy," Opt. Express 19, 19955-19966 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-21-19955


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003). [CrossRef] [PubMed]
  2. M. A. Foster, A. C. Turner, M. Lipson, and A. L. Gaeta, “Nonlinear optics in photonic nanowires,” Opt. Express16(2), 1300–1320 (2008). [CrossRef] [PubMed]
  3. E. C. Mägi, P. Steinvurzel, and B. J. Eggleton, “Tapered photonic crystal fibers,” Opt. Express12(5), 776–784 (2004). [CrossRef] [PubMed]
  4. Y. K. Lizé, E. C. Mägi, V. G. Ta’eed, J. A. Bolger, P. Steinvurzel, and B. J. Eggleton, “Microstructured optical fiber photonic wires with subwavelength core diameter,” Opt. Express12(14), 3209–3217 (2004). [CrossRef] [PubMed]
  5. R. R. Gattass, G. T. Svacha, L. M. Tong, and E. Mazur, “Supercontinuum generation in submicrometer diameter silica fibers,” Opt. Express14(20), 9408–9414 (2006). [CrossRef] [PubMed]
  6. S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, and M. W. Mason, “Supercontinuum generation in submicron fibre waveguides,” Opt. Express12(13), 2864–2869 (2004). [CrossRef] [PubMed]
  7. L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental observation of picosecond pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett.45(13), 1095–1098 (1980). [CrossRef]
  8. L. F. Mollenauer, R. H. Stolen, J. P. Gordon, and W. J. Tomlinson, “Extreme picosecond pulse narrowing by means of soliton effect in single-mode optical fibers,” Opt. Lett.8(5), 289–291 (1983). [CrossRef] [PubMed]
  9. C. M. Chen and P. L. Kelley, “Nonlinear pulse compression in optical fibers: scaling laws and numerical analysis,” J. Opt. Soc. Am. B19(9), 1961–1967 (2002). [CrossRef]
  10. M. Foster, A. L. Gaeta, Q. Cao, and R. Trebino, “Soliton-effect compression of supercontinuum to few-cycle durations in photonic nanowires,” Opt. Express13(18), 6848–6855 (2005). [CrossRef] [PubMed]
  11. J. M. Harbold, F. O. Ilday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw, and I. D. Aggarwal, “Highly nonlinear As-S-Se glasses for all-optical switching,” Opt. Lett.27(2), 119–121 (2002). [CrossRef] [PubMed]
  12. D. I. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett.33(7), 660–662 (2008). [CrossRef] [PubMed]
  13. D. D. Hudson, S. A. Dekker, E. C. Mägi, A. C. Judge, S. D. Jackson, E. Li, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton, “Octave spanning supercontinuum in an As2S3 taper using ultralow pump pulse energy,” Opt. Lett.36(7), 1122–1124 (2011). [CrossRef] [PubMed]
  14. L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express12(6), 1025–1035 (2004). [CrossRef] [PubMed]
  15. M. Zghal and R. Cherif, “Impact of small geometrical imperfections on chromatic dispersion and birefringence in photonic crystal fibers,” Opt. Eng.46(12), 128002 (2007). [CrossRef]
  16. M. A. Foster, K. D. Moll, and A. L. Gaeta, “Optimal waveguide dimensions for nonlinear interactions,” Opt. Express12(13), 2880–2887 (2004). [CrossRef] [PubMed]
  17. T. Brabec and F. Krausz, “Nonlinear optical pulse propagation in the single-cycle regime,” Phys. Rev. Lett.78(17), 3282–3285 (1997). [CrossRef]
  18. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press, 2007).
  19. K. J. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron.25(12), 2665–2673 (1989). [CrossRef]
  20. R. Cherif, A. Ben-Salem, M. Zghal, P. Besnard, T. Chartier, L. Brilland, and J. Troles, “Highly nonlinear As2Se3-based chalcogenide photonic crystal fiber for midinfrared supercontinuum generation,” Opt. Eng.49(9), 095002 (2010). [CrossRef]
  21. R. E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Large Raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers,” J. Opt. Soc. Am. B21(6), 1146–1155 (2004). [CrossRef]
  22. A. Ben-Salem, R. Cherif, and M. Zghal, “Raman response of a highly nonlinear As2Se3-based chalcogenide photonic crystal fiber,” Proc. PIERS, 1256–1260, Marrakesh, Morocco (2011).
  23. C. Xiong, E. Magi, F. Luan, A. Tuniz, S. Dekker, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton, “Characterization of picosecond pulse nonlinear propagation in chalcogenide As2S3 fiber,” Appl. Opt.48(29), 5467–5474 (2009). [CrossRef] [PubMed]
  24. A. Ben Salem, R. Cherif, and M. Zghal, “Generation of few optical cycles in air-silica nanowires,” Proc. SPIE8001, 80011J (2011). [CrossRef]
  25. M. Bass, Handbook of Optics (McGraw Hill, 1997).
  26. D.-P. Wei, T. Galstian, I. Smolnikov, V. Plotnichenko, and A. Zohrabyan, “Spectral broadening of femtosecond pulses in a single-mode As-S glass fiber,” Opt. Express13(7), 2439–2443 (2005). [CrossRef] [PubMed]
  27. B. Kibler, R. Fischer, P.-A. Lacourt, F. Courvoisier, R. Ferriere, L. Larger, D. N. Neshev, and J. M. Dudley, “Optimised one-step compression of femtosecond fibre laser soliton pulses around 1550 nm to below 30 fs in highly nonlinear fibre,” Electron. Lett.43(17), 915–916 (2007). [CrossRef]
  28. G. Brambilla, “Optical fibre nanotaper sensors,” Opt. Fiber Technol.16(6), 331–342 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited