OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 21 — Oct. 10, 2011
  • pp: 19973–19986

Surface plasmon-polariton propagation in piecewise linear chains of composite nanospheres: The role of optical gain and chain layout

Indika B. Udagedara, Ivan D. Rukhlenko, and Malin Premaratne  »View Author Affiliations

Optics Express, Vol. 19, Issue 21, pp. 19973-19986 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (904 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The energy transport properties of plasmonic waveguides can be analyzed by solving the dispersion relation for surface plasmon-polaritons (SPPs). We use this approach to derive an approximate analytical expression for SPP propagation length when the waveguide is composed of linearly arranged metallic nanoparticles, while assuming that metal losses are small or partially compensated by gain. Applied to metal–dielectric (composite) nanospheres, the obtained expression allows us to optimize the performance of the waveguide and arrive at a number of practical design rules. Specifically, we show that SPP attenuation can be minimized at a certain interparticle distance for transverse modes, but gradually grows for both longitudinal and transverse modes with the increase of particle separation. We also show that the two basic methods of supplying gain to the system, i.e., embedding the particles into a gain medium or having a metal–gain composition for the particles, do not perform equally well and the former method is more efficient, but the way the two methods affect depends on the polarization of SPPs. To investigate the role of the nanoparticles’ arrangement in determining SPP characteristics, we follow a purely numerical approach and consider a two-segment bent waveguide as an example. Analyzing the waveguide’s transmission shows that it behaves in an oscillatory manner with respect to the angle between the two segments and is therefore higher for certain angles than for the others. This suggests that, in the design of waveguides with bends, careful attention needs to be paid in order to avoid bend angles that yield low transmission and to choose angles that give maximum transmission.

© 2011 OSA

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(240.6680) Optics at surfaces : Surface plasmons
(250.5403) Optoelectronics : Plasmonics
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Optics at Surfaces

Original Manuscript: July 19, 2011
Revised Manuscript: August 24, 2011
Manuscript Accepted: August 28, 2011
Published: September 28, 2011

Indika B. Udagedara, Ivan D. Rukhlenko, and Malin Premaratne, "Surface plasmon-polariton propagation in piecewise linear chains of composite nanospheres: The role of optical gain and chain layout," Opt. Express 19, 19973-19986 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Zia, J. Schuller, A. Chandran, and M. Brongersma, “Plasmonics: The next chip-scale technology,” Mater. Today 9, 20–27 (2006). [CrossRef]
  2. S. Maier, M. Brongersma, P. Kik, S. Meltzer, A. Requicha, and H. Atwater, “Plasmonics: A route to nanoscale optical devices,” Adv. Mater. 13, 2 (2001). [CrossRef]
  3. D. Gramotnev and S. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010). [CrossRef]
  4. S. Maier, “Plasmonics: Metal nanostructures for subwavelength photonic devices,” IEEE J. Sel. Top. Quantum Electron. 12, 1214–1220 (2006). [CrossRef]
  5. W. Barnes, A. Dereux, and T. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003). [CrossRef] [PubMed]
  6. S. Lal, S. Link, and N. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007). [CrossRef]
  7. S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101 (2005). [CrossRef]
  8. P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, “Characterization of long-range surface-plasmon-polariton waveguides,” J. Appl. Phys. 98, 043109 (2005). [CrossRef]
  9. E. Economou, “Surface plasmons in thin films,” Phys. Rev. 182, 539 (1969). [CrossRef]
  10. A. Pannipitiya, I. D. Rukhlenko, and M. Premaratne, “Analytical modeling of efficient couples for plasmonic-slot-waveguide junctions,” IEEE Photonics J. 3, 220–233 (2011). [CrossRef]
  11. A. Pannipitiya, I. D. Rukhlenko, M. Premaratne, H. T. Hattori, and G. P. Agrawal, “Improved transmission model for metal-dielectric-metal plasmonic waveguides with stub structure,” Opt. Express 18, 6191–6204 (2010). [CrossRef] [PubMed]
  12. D. Handapangoda, M. Premaratne, I. D. Rukhlenko, and C. Jagadish, “Optimal design of composite nanowires for extended reach of surface plasmon-polaritons,” Opt. Express 19, 16058–16074 (2011). [CrossRef] [PubMed]
  13. D. Handapangoda, I. D. Rukhlenko, M. Premaratne, and C. Jagadish, “Optimization of gain-assisted waveguiding in metal-dielectric nanowires,” Opt. Lett. 35, 4190–4192 (2010). [CrossRef] [PubMed]
  14. J. Chen, J. Benjamin, and Y. Xia, “One-dimensional nanostructures of metals: Large-scale synthesis and some potential applications,” Langmuir 23, 4120–4129 (2007). [CrossRef] [PubMed]
  15. J. Krenn and J. Weeber, “Surface plasmon polaritons in metal stripes and wires,” Philos. Trans. R. Soc. London, Ser. A 362, 739–756 (2004). [CrossRef]
  16. M. Quinten, A. J. Leitner, R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23, 1331–1333 (1998). [CrossRef]
  17. I. B. Udagedara, I. D. Rukhlenko, and M. Premaratne, “Complex-ω approach versus complex-k approach in description of gain-assisted surface plasmon-polariton propagation along linear chains of metallic nanospheres,” Phys. Rev. B 83, 115451 (2011). [CrossRef]
  18. X. Cui and D. Erni, “Enhanced propagation in a plasmonic chain waveguide with nanoshell structures based on low-and high-order mode coupling,” J. Opt. Soc. Am. A 25, 1783–1789 (2008). [CrossRef]
  19. K. B. Crozier, E. Togan, E. Simsek, and T. Yang, “Experimental measurement of the dispersion relations of the surface plasmon modes of metal nanoparticle chains,” Opt. Express 15, 17482–17493 (2007). [CrossRef] [PubMed]
  20. A. Alù and N. Engheta, “Theory of linear chains of metamaterial/plasmonic particles as subdiffraction optical nanotransmission lines,” Phys. Rev. B 74, 205436 (2006). [CrossRef]
  21. G. Gantzounis, N. Stefanou, and V. Yannopapas, “Optical properties of a periodic monolayer of metallic nanospheres on a dielectric waveguide,” J. Phys. Condens. Matter 17, 1791 (2005). [CrossRef]
  22. D. Citrin, “Coherent excitation transport in metal-nanoparticle chains,” Nano Lett. 4, 1561–1565 (2004). [CrossRef]
  23. J. Khurgin and G. Sun, “In search of the elusive lossless metal,” Appl. Phys. Lett. 96, 181102 (2010). [CrossRef]
  24. M. I. Stockman, “Criterion for negative refraction with low optical losses from a fundamental principle of causality,” Phys. Rev. Lett. 98, 177404 (2007). [CrossRef]
  25. H. Zhang and H.-P. Ho, “Low-loss plasmonic waveguide based on gain-assisted periodic metal nanosphere chains,” Opt. Express 18, 23035–23040 (2010). [CrossRef] [PubMed]
  26. D. Citrin, “Plasmon-polariton transport in metal-nanoparticle chains embedded in a gain medium,” Opt. Lett. 31, 98–100 (2006). [CrossRef] [PubMed]
  27. P. Holmström, L. Thylén, and A. Bratkovsky, “Composite metal/quantum-dot nanoparticle-array waveguides with compensated loss,” Appl. Phys. Lett. 97, 073110 (2010). [CrossRef]
  28. B. Willingham and S. Link, “Energy transport in metal nanoparticle chains via sub-radiant plasmon modes,” Opt. Express 19, 6450–6461 (2011). [CrossRef] [PubMed]
  29. S. Maier, P. Kik, and H. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss,” Appl. Phys. Lett. 81, 1714 (2002). [CrossRef]
  30. A. Govyadinov and V. Markel, “From slow to superluminal propagation: Dispersive properties of surface plasmon polaritons in linear chains of metallic nanospheroids,” Phys. Rev. B 78, 035403 (2008). [CrossRef]
  31. M. Conforti and M. Guasoni, “Dispersive properties of linear chains of lossy metal nanoparticles,” J. Opt. Soc. Am. B 27, 1576–1582 (2010). [CrossRef]
  32. A. Koenderink and A. Polman, “Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains,” Phys. Rev. B 74, 033402 (2006). [CrossRef]
  33. W. H. Weber and G. W. Ford, “Propagation of optical excitations by dipolar interactions in metal nanoparticle chains,” Phys. Rev. B 70, 125429 (2004). [CrossRef]
  34. M. Guasoni and C. de Angelis, “Analytical approximations of the dispersion relation of a linear chain of metal nanoparticles,” Opt. Commun. 284, 1822–1827 (2011). [CrossRef]
  35. B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. B 11, 1491–1499 (1994). [CrossRef]
  36. J. Gérardy and M. Ausloos, “Absorption spectrum of clusters of spheres from the general solution of Maxwell’s equations. II. Optical properties of aggregated metal spheres,” Phys. Rev. B 25, 4204–4229 (1982). [CrossRef]
  37. M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, 16356 (2000). [CrossRef]
  38. S. Park and D. Stroud, “Surface-plasmon dispersion relations in chains of metallic nanoparticles: An exact quasistatic calculation,” Phys. Rev. B 69, 125418 (2004). [CrossRef]
  39. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  40. L. Zhao, K. Kelly, and G. Schatz, “The extinction spectra of silver nanoparticle arrays: Influence of array structure on plasmon resonance wavelength and width,” J. Phys. Chem. 107, 7343–7350 (2003). [CrossRef]
  41. K. Kelly, E. Coronado, L. Zhao, and G. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003). [CrossRef]
  42. A. Wokaun, J. Gordon, and P. Liao, “Radiation damping in surface-enhanced Raman scattering,” Phys. Rev. Lett. 48, 957–960 (1982). [CrossRef]
  43. C. F. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  44. D. Citrin, “Plasmon polaritons in finite-length metal-nanoparticle chains: The role of chain length unravelled,” Nano Lett. 5, 985–989 (2005). [CrossRef] [PubMed]
  45. L. Lewin, Dilogarithms and Associated Functions (McDonald, 1958).
  46. V. Markel and A. Sarychev, “Propagation of surface plasmons in ordered and disordered chains of metal nanospheres,” Phys. Rev. B 75, 085426 (2007). [CrossRef]
  47. K. Huang, E. Lidorikis, X. Jiang, J. Joannopoulos, K. Nelson, P. Bienstman, and S. Fan, “Nature of lossy Bloch states in polaritonic photonic crystals,” Phys. Rev. B 69, 195111 (2004).
  48. M. I. Stockman, “Nanoplasmonics: The physics behind the applications,” Phys. Today 64, 39–44 (2011). [CrossRef]
  49. J. A. Gordon and R. W. Ziolkowski, “The design and simulated performance of a coated nano-particle laser,” Opt. Express 15, 2622–2653 (2007). [CrossRef] [PubMed]
  50. J. A. Gordon and R. W. Ziolkowski, “Investigating functionalized active coated nanoparticles for use in nano-sensing applications,” Opt. Express 15, 12562–12582 (2007). [CrossRef] [PubMed]
  51. N. M. Lawandy, “Localized surface plasmon singularities in amplifying media,” Appl. Phys. Lett. 85, 5040–5042 (2004). [CrossRef]
  52. C. Tserkezis, G. Gantzounis, and N. Stefanou, “Collective plasmonic modes in ordered assemblies of metallic nanoshells,” J. Phys. Condens. Matter 20, 075232 (2008). [CrossRef]
  53. S. Wang, J. Xiao, and K. Yu, “Tunable coupled plasmon modes via nanoshell particle chains,” Opt. Commun. 279, 384–389 (2007). [CrossRef]
  54. R. D. Averitt, S. L. Westcott, and N. J. Halas, “Linear optical properties of gold nanoshells,” J. Opt. Soc. Am. B 16, 1824–1832 (1999). [CrossRef]
  55. A. V. Fedorov, A. V. Baranov, I. D. Rukhlenko, and S. V. Gaponenko, “Enhanced intraband carrier relaxation in quantum dots due to the effect of plasmon–LO-phonon density of states in doped heterostructures,” Phys. Rev. B 71, 195310 (2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited