OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 21 — Oct. 10, 2011
  • pp: 19993–20002

Application of cavity ring-down spectroscopy to the Boltzmann constant determination

Y. R. Sun, H. Pan, C.-F. Cheng, A.-W. Liu, J.-T. Zhang, and S.-M. Hu  »View Author Affiliations

Optics Express, Vol. 19, Issue 21, pp. 19993-20002 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1043 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The Boltzmann constant can be optically determined by measuring the Doppler width of an absorption line of molecules at gas phase. We propose to apply a near infrared cavity ring-down (CRD) spectrometer for this purpose. The superior sensitivity of CRD spectroscopy and the good performance of the near-ir lasers can provide ppm (part-per-million) accuracy which will be competitive to present most accurate result obtained from the speed of sound in argon measurement. The possible influence to the uncertainty of the determined Doppler width from different causes are investigated, which includes the signal-to-noise level, laser frequency stability, detecting nonlinearity, and pressure broadening effect. The analysis shows that the CRD spectroscopy has some remarkable advantages over the direct absorption method proposed before. The design of the experimental setup is presented and the measurement of C2H2 line near 0.8 μm at room temperature has been carried out as a test of the instrument.

© 2011 OSA

OCIS Codes
(020.3690) Atomic and molecular physics : Line shapes and shifts
(120.3940) Instrumentation, measurement, and metrology : Metrology
(300.6360) Spectroscopy : Spectroscopy, laser

ToC Category:

Original Manuscript: June 27, 2011
Revised Manuscript: August 16, 2011
Manuscript Accepted: September 12, 2011
Published: September 28, 2011

Y. R. Sun, H. Pan, C.-F. Cheng, A.-W. Liu, J.-T. Zhang, and S.-M. Hu, "Application of cavity ring-down spectroscopy to the Boltzmann constant determination," Opt. Express 19, 19993-20002 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. I. M. Mills, P. J. Mohr, T. J. Quinn, B. N. Taylor, and E. R. Williams, “Redefinition of the kilogram, ampere, kelvin and mole: a proposed approach to implementing cipm recommendation 1 (ci-2005),” Metrologia 43, 227–246 (2006). [CrossRef]
  2. C. Daussy, M. Guinet, A. Amy-Klein, K. Djerroud, Y. Hermier, S. Briaudeau, C. J. Bordé, and C. Chardonnet, “Direct determination of the boltzmann constant by an optical method,” Phys. Rev. Lett. 98, 250801 (2007). [CrossRef] [PubMed]
  3. T. Udem, R. Holzwarth, and T. W. Hansch, “Optical frequency metrology,” Nature 416, 233–237 (2002). [CrossRef] [PubMed]
  4. P. J. Mohr, B. N. Taylor, and D. B. Neweo, “CODATA recommended values of the fundamental physical constants: 2006,” J. Phys. Chem. Ref. Data 37, 1187–1284 (2008). [CrossRef]
  5. G. Casa, A. Castrillo, G. Galzerano, R. Wehr, A. Merlone, D. Di Serafino, P. Laporta, and L. Gianfrani, “Primary gas thermometry by means of laser-absorption spectroscopy: Determination of the boltzmann constant,” Phys. Rev. Lett. 100, 200801 (2008). [CrossRef] [PubMed]
  6. K. Djerroud, C. Lemarchand, A. Gauguet, C. Daussy, S. Briaudeau, B. Darquie, O. Lopez, A. Amy-Klein, C. Chardonnet, and C. J. Borde, “Measurement of the Boltzmann constant by the Doppler broadening technique at a 3.8 × 10−5 accuracy level,” C. R. Physique 10, 883–893 (2009). [CrossRef]
  7. C. Lemarchand, M. Triki, B. Darquié, Ch. J. Bordé, C. Chardonnet, and C. Daussy, “Progress towards an accurate determination of the Boltzmann constant by Doppler spectroscopy,” New J. Phys.13, 073028 (2011). [CrossRef]
  8. A. Castrillo, G. Casa, A. Merlone, G. Galzerano, P. Laporta, and L. Gianfrani, “On the determination of the Boltzmann constant by means of precision molecular spectroscopy in the near-infrared,” C. R. Physique 10, 894–906 (2009). [CrossRef]
  9. K. M. T. Yamada, A. Onae, F. L. Hong, H. Inaba, H. Matsumoto, Y. Nakajima, F. Ito, and T. Shimizu, “High precision line profile measurements on C-13 acetylene using a near infrared frequency comb spectrometer,” J. Mol. Spectorsc. 249, 95–99 (2008). [CrossRef]
  10. K. M. T. Yamada, A. Onae, F.-L. Hong, H. Inaba, and T. Shimizu, “Precise determination of the Doppler width of a rovibrational absorption line using a comb-locked diode laser,” C. R. Physique 10, 907–915 (2009). [CrossRef]
  11. A. Cygan, D. Lisak, R. S. Trawiński, and R. Ciuryło, “Influence of the line-shape model on the spectroscopic determination of the boltzmann constant,” Phys. Rev. A 82, 032515 (2010). [CrossRef]
  12. B. Gao, W. Jiang, A.-W. Liu, Y. Lu, C.-F. Cheng, G.-S. Cheng, and S.-M. Hu, “Ultra sensitive near-infrared cavity ring down spectrometer for precise line profile measurement,” Rev. Sci. Instrum. 81, 043105 (2010). [CrossRef] [PubMed]
  13. A. O’Keefe and D. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–51 (1988). [CrossRef]
  14. B. A. Paldus and A. A. Kachanov, “An historical overview of cavity-enhanced methods,” Can. J. Phys. 83, 975–999 (2005). [CrossRef]
  15. J. T. Hodges, H. P. Layer, W. W. Miller, and G. E. Scace, “Frequency-stabilized single-mode cavity ring-down apparatus for high-resolution absorption spectroscopy,” Rev. Sci. Instrum. 75, 849–863 (2004). [CrossRef]
  16. J. T. Hodges and R. Ciurylo, “Automated high-resolution frequency-stabilized cavity ring-down absorption spectrometer,” Rev. Sci. Instrum. 76, 023112 (2005). [CrossRef]
  17. D. A. Long, D. K. Havey, M. Okumura, C. E. Miller, and J. T. Hodges, “Cavity ring-down spectroscopy measurements of sub-doppler hyperfine structure,” Phys. Rev. A 81, 064502 (2010). [CrossRef]
  18. A. Cygan, D. Lisak, P. Maslowski, K. Bielska, S. Wojtewicz, J. Domyslawska, R. S. Trawinski, R. Ciurylo, H. Abe, and J. T. Hodges, “Pound-drever-hall-locked, frequency-stabilized cavity ring-down spectrometer,” Rev. Sci. Instrum. 82, 063107 (2011). [CrossRef] [PubMed]
  19. P. Zalicki and R. N. Zare, “Cavity ring-down spectroscopy for quantitative absorption measurements,” J. Chem. Phys. 102, 2708–2717 (1995). [CrossRef]
  20. M. D. De Vizia, F. Rohart, ccedil ois, A. Castrillo, E. Fasci, L. Moretti, and L. Gianfrani, “Speed-dependent effects in the near-infrared spectrum of self-colliding h2o18 molecules,” Phys. Rev. A 83, 052506 (2011). [CrossRef]
  21. R. Wehr, J. R. Drummond, and A. D. May, “Design of a difference-frequency infrared laser spectrometer for absorption line-shape studies,” Applied Optics 46, 978–985 (2007). [CrossRef] [PubMed]
  22. C. J. Borde, “On the theory of linear absorption line shapes in gases,” C. R. Physique 10, 866–882 (2009). [CrossRef]
  23. J. T. Zhang, H. Lin, J. P. Sun, X. J. Feng, K. A. Gillis, and M. R. Moldover, “Cylindrical acoustic resonator for the re-determination of the boltzmann constant,” Int. J. Thermophys. 31, 1273–1293 (2010). [CrossRef]
  24. X. Zhan and L. Halonen, “High-resolution photoacoustic study of the ν1 + 3ν3 band system of acetylene with a titanium:sapphire ring laser,” J. Mol. Spectorsc. 160, 464 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited