OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 21 — Oct. 10, 2011
  • pp: 20003–20008

Salinity sensor based on polyimide-coated photonic crystal fiber

Chuang Wu, Bai-Ou Guan, Chao Lu, and Hwa-Yaw Tam  »View Author Affiliations


Optics Express, Vol. 19, Issue 21, pp. 20003-20008 (2011)
http://dx.doi.org/10.1364/OE.19.020003


View Full Text Article

Enhanced HTML    Acrobat PDF (1062 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We proposed and experimentally demonstrated a highly sensitive salinity sensor using a polyimide-coated Hi-Bi photonic crystal fiber Sagnac interferometer based on the coating swelling induced radial pressure. This is the first time to exploit fiber coating induced pressure effect for salinity sensing. The achieved salinity sensitivity is 0.742 nm/(mol/L), which is 45 times more sensitive than that of a polyimide-coated fiber Bragg grating. A bare fiber Bragg grating is incorporated into the fiber loop for temperature compensation.

© 2011 OSA

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.5790) Instrumentation, measurement, and metrology : Sagnac effect
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Sensors

History
Original Manuscript: July 22, 2011
Revised Manuscript: August 29, 2011
Manuscript Accepted: September 1, 2011
Published: September 28, 2011

Citation
Chuang Wu, Bai-Ou Guan, Chao Lu, and Hwa-Yaw Tam, "Salinity sensor based on polyimide-coated photonic crystal fiber," Opt. Express 19, 20003-20008 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-21-20003


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. St. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol.24(12), 4729–4749 (2006). [CrossRef]
  2. B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, “Microstructured optical fiber devices,” Opt. Express9(13), 698–713 (2001). [CrossRef] [PubMed]
  3. O. Frazão, J. L. Santos, F. M. Araújo, and L. A. Ferreira, “Optical sensing with photonic crystal fibers,” Laser Photonics Rev.2(6), 449–459 (2008). [CrossRef]
  4. H. Y. Choi, M. J. Kim, and B. H. Lee, “All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber,” Opt. Express15(9), 5711–5720 (2007). [CrossRef] [PubMed]
  5. J. Villatoro, V. P. Minkovich, V. Pruneri, and G. Badenes, “Simple all-microstructured-optical-fiber interferometer built via fusion splicing,” Opt. Express15(4), 1491–1496 (2007). [CrossRef] [PubMed]
  6. W. W. Qian, C. L. Zhao, S. L. He, X. Y. Dong, S. Q. Zhang, Z. X. Zhang, S. Z. Jin, J. T. Guo, and H. F. Wei, “High-sensitivity temperature sensor based on an alcohol-filled photonic crystal fiber loop mirror,” Opt. Lett.36(9), 1548–1550 (2011). [CrossRef] [PubMed]
  7. V. P. Minkovich, J. Villatoro, D. Monzón-Hernández, S. Calixto, A. Sotsky, and L. Sotskaya, “Holey fiber tapers with resonance transmission for high-resolution refractive index sensing,” Opt. Express13(19), 7609–7614 (2005). [CrossRef] [PubMed]
  8. B. Gu, M. J. Yin, A. P. Zhang, J. W. Qian, and S. L. He, “Low-cost high-performance fiber-optic pH sensor based on thin-core fiber modal interferometer,” Opt. Express17(25), 22296–22302 (2009). [CrossRef] [PubMed]
  9. B. Gu, M. J. Yin, A. P. Zhang, J. W. Qian, and S. L. He, “Optical fiber relative humidity sensor based on FBG incorporated thin-core fiber modal interferometer,” Opt. Express19(5), 4140–4146 (2011). [CrossRef] [PubMed]
  10. Q. Wu, Y. Semenova, J. Mathew, P. Wang, and G. Farrell, “Humidity sensor based on a single-mode hetero-core fiber structure,” Opt. Lett.36(10), 1752–1754 (2011). [CrossRef] [PubMed]
  11. J. Cong, X. M. Zhang, K. S. Chen, and J. Xu, “Fiber optic Bragg grating sensor based on hydrogels for measuring salinity,” Sens. Actuators B Chem.87(3), 487–490 (2002). [CrossRef]
  12. L. Q. Men, P. Lu, and Q. Y. Chen, “A multiplexed fiber Bragg grating sensor for simultaneous salinity and temperature measurement,” J. Appl. Phys.103(5), 053107 (2008). [CrossRef]
  13. N. Díaz-Herrera, O. Esteban, M. C. Navarrete, M. Le Haitre, and A. González-Cano, “In situ salinity measurements in seawater with a fibre-optic probe,” Meas. Sci. Technol.17(8), 2227–2232 (2006). [CrossRef]
  14. D. J. Gentleman and K. S. Booksh, “Determining salinity using a multimode fiber optic surface plasmon resonance dip-probe,” Talanta68(3), 504–515 (2006). [CrossRef] [PubMed]
  15. R. Falate, O. Frazão, G. Rego, J. L. Fabris, and J. L. Santos, “Refractometric sensor based on a phase-shifted long-period fiber grating,” Appl. Opt.45(21), 5066–5072 (2006). [CrossRef] [PubMed]
  16. G. R. C. Possetti, R. C. Kamikawachi, C. L. Prevedello, M. Muller, and J. L. Fabris, “Salinity measurement in water environment with a long period grating based interferometer,” Meas. Sci. Technol.20(3), 034003 (2009). [CrossRef]
  17. D. A. Pereira, O. Frazão, and J. L. Santos, “Fiber Bragg grating sensing system for simultaneous measurement of salinity and temperature,” Opt. Eng.43(2), 299–304 (2004). [CrossRef]
  18. L. V. Nguyen, M. Vasiliev, and K. Alameh, “Three-Wave Fiber Fabry–Pérot Interferometer for Simultaneous Measurement of Temperature and Water Salinity of Seawater,” IEEE Photon. Technol. Lett.23(7), 450–452 (2011). [CrossRef]
  19. C. L. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demokan, “Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror,” IEEE Photon. Technol. Lett.16(11), 2535–2537 (2004). [CrossRef]
  20. D. H. Kim and J. U. Kang, “Sagnac loop interferometer based on polarization maintaining photonic crystal fiber with reduced temperature sensitivity,” Opt. Express12(19), 4490–4495 (2004). [CrossRef] [PubMed]
  21. G. Statkiewicz, T. Martynkien, and W. Urbańczyk, “Measurements of modal birefringence and polarimetric sensitivity of the birefringent holey fiber to hydrostatic pressure and strain,” Opt. Commun.241(4-6), 339–348 (2004). [CrossRef]
  22. X. Y. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett.90(15), 151113 (2007). [CrossRef]
  23. H. Y. Fu, H. Y. Tam, L. Y. Shao, X. Y. Dong, P. K. A. Wai, C. Lu, and S. K. Khijwania, “Pressure sensor realized with polarization-maintaining photonic crystal fiber-based Sagnac interferometer,” Appl. Opt.47(15), 2835–2839 (2008). [CrossRef] [PubMed]
  24. H. Y. Fu, C. Wu, M. L. Tse, L. Zhang, K. C. Cheng, H. Y. Tam, B.-O. Guan, and C. Lu, “High pressure sensor based on photonic crystal fiber for downhole application,” Appl. Opt.49(14), 2639–2643 (2010). [CrossRef]
  25. H. Y. Fu, A. C. L. Wong, P. A. Childs, H. Y. Tam, Y. B. Liao, C. Lu, and P. K. A. Wai, “Multiplexing of polarization-maintaining photonic crystal fiber based Sagnac interferometric sensors,” Opt. Express17(21), 18501–18512 (2009). [CrossRef] [PubMed]
  26. M. L. V. Tse, H. Y. Tam, L. B. Fu, B. K. Thomas, L. Dong, C. Lu, and P. K. A. Wai, “Fusion splicing holey fibers and single-mode fibers: A simple method to reduce loss and increase strength,” IEEE Photon. Technol. Lett.21(3), 164–166 (2009). [CrossRef]
  27. M. G. Xu, L. Reekie, Y. T. Chow, and J. P. Dakin, “Optical in-fiber grating high pressure sensor,” Electron. Lett.29(4), 398–399 (1993). [CrossRef]
  28. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997). [CrossRef]
  29. C. Wu, H. Y. Fu, H. Y. Au, B. O. Guan, and H. Y. Tam, “High-sensitivity salinity sensor realized with photonic crystal fiber Sagnac interferometer,” Proc. SPIE7753, 77531B (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited