OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 21 — Oct. 10, 2011
  • pp: 20023–20034

Nanoscale photonic crystal sensor arrays on monolithic substrates using side-coupled resonant cavity arrays

Daquan Yang, Huiping Tian, and Yuefeng Ji  »View Author Affiliations


Optics Express, Vol. 19, Issue 21, pp. 20023-20034 (2011)
http://dx.doi.org/10.1364/OE.19.020023


View Full Text Article

Enhanced HTML    Acrobat PDF (2001 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present nanoscale photonic crystal sensor arrays (NPhCSAs) on monolithic substrates. The NPhCSAs can be used as an opto-fluidic architecture for performing highly parallel, label-free detection of biochemical interactions in aqueous environments. The architecture consists of arrays of lattice-shifted resonant cavities side-coupled to a single PhC waveguide. Each resonant cavity has slightly different cavity spacing and is shown to independently shift its resonant peak (a single and narrow drop) in response to the changes in refractive index. The extinction ratio of well-defined single drop exceeds 20 dB. With three-dimensional finite-difference time-domain (3D-FDTD) technique, we demonstrate that the refractive index sensitivity of 115.60 nm/RIU (refractive index unit) is achieved and a refractive index detection limit is approximately of 8.65 × 10−5 for this device. In addition, the sensitivity can be adjusted from 84.39 nm/RIU to 161.25 nm/RIU by changing the number of functionalized holes.

© 2011 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.5750) Optical devices : Resonators
(280.4788) Remote sensing and sensors : Optical sensing and sensors
(130.5296) Integrated optics : Photonic crystal waveguides
(160.5298) Materials : Photonic crystals

ToC Category:
Sensors

History
Original Manuscript: April 18, 2011
Revised Manuscript: June 16, 2011
Manuscript Accepted: June 16, 2011
Published: September 29, 2011

Citation
Daquan Yang, Huiping Tian, and Yuefeng Ji, "Nanoscale photonic crystal sensor arrays on monolithic substrates using side-coupled resonant cavity arrays," Opt. Express 19, 20023-20034 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-21-20023


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Erickson, S. Mandal, A. H. Yang, and B. Cordovez, “Nanobiosensors: optofluidic, electrical and mechanical approaches to biomolecular detection at the nanoscale,” Microfluid Nanofluidics4(1-2), 33–52 (2008). [CrossRef] [PubMed]
  2. S. C. Buswell, V. A. Wright, J. M. Buriak, V. Van, and S. Evoy, “Specific detection of proteins using photonic crystal waveguides,” Opt. Express16(20), 15949–15957 (2008). [CrossRef] [PubMed]
  3. T. W. Lu and P. T. Lee, “Ultra-high sensitivity optical stress sensor based on double-layered photonic crystal microcavity,” Opt. Express17(3), 1518–1526 (2009). [CrossRef] [PubMed]
  4. A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes—Part I: Basics,” IEEE J. Sel. Top. Quantum Electron.12(1), 3–14 (2006). [CrossRef]
  5. A. M. Armani and K. J. Vahala, “Heavy water detection using ultra-high-Q microcavities,” Opt. Lett.31(12), 1896–1898 (2006). [CrossRef] [PubMed]
  6. F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett.80(21), 4057–4059 (2002). [CrossRef]
  7. A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science317(5839), 783–787 (2007). [CrossRef] [PubMed]
  8. R. Karlsson, “SPR for molecular interaction analysis: a review of emerging application areas,” J. Mol. Recognit.17(3), 151–161 (2004). [CrossRef] [PubMed]
  9. B. J. Luff, J. S. Wilkinson, J. Piehler, U. Hollenbach, J. Ingenhoff, and N. Fabricius, “Integrated optical Mach-Zehnder biosensor,” J. Lightwave Technol.16(4), 583–592 (1998). [CrossRef]
  10. A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. van Hövell, T. A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a Young interferometer sensor,” Nano Lett.7(2), 394–397 (2007). [CrossRef] [PubMed]
  11. J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature390(6656), 143–145 (1997). [CrossRef]
  12. S. H. Kwon, T. Sünner, M. Kamp, and A. Forchel, “Optimization of photonic crystal cavity for chemical sensing,” Opt. Express16(16), 11709–11717 (2008). [CrossRef] [PubMed]
  13. J. Dahdah, N. Courjal, and F. I. Baida, “Analysis of a photonic crystal cavity based on absorbent layer for sensing applications,” J. Opt. Soc. Am. B27(2), 305–310 (2010). [CrossRef]
  14. S. Mandal and D. Erickson, “Nanoscale optofluidic sensor arrays,” Opt. Express16(3), 1623–1631 (2008). [CrossRef] [PubMed]
  15. G. A. Cárdenas-Sevilla, V. Finazzi, J. Villatoro, and V. Pruneri, “Photonic crystal fiber sensor array based on modes overlapping,” Opt. Express19(8), 7596–7602 (2011). [CrossRef] [PubMed]
  16. D. Psaltis, S. R. Quake, and C. H. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature442(7101), 381–386 (2006). [CrossRef] [PubMed]
  17. C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics1(2), 106–114 (2007). [CrossRef]
  18. Z. Zhang and M. Qiu, “Small-volume waveguide-section high Q microcavities in 2D photonic crystal slabs,” Opt. Express12(17), 3988–3995 (2004). [CrossRef] [PubMed]
  19. T. Xu, N. Zhu, M. Y. Xu, L. Wosinski, J. S. Aitchison, and H. E. Ruda, “Pillar-array based optical sensor,” Opt. Express18(6), 5420–5425 (2010). [CrossRef] [PubMed]
  20. J. Joannopoulos, R. Meade, and J. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, 1995).
  21. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425(6961), 944–947 (2003). [CrossRef] [PubMed]
  22. R. Shankar, R. Leijssen, I. Bulu, and M. Lončar, “Mid-infrared photonic crystal cavities in silicon,” Opt. Express19(6), 5579–5586 (2011). [CrossRef] [PubMed]
  23. T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nat. Photonics1(1), 49–52 (2007). [CrossRef]
  24. Y. Li, J. Zheng, J. Gao, J. Shu, M. S. Aras, and C. W. Wong, “Design of dispersive optomechanical coupling and cooling in ultrahigh-Q/V slot-type photonic crystal cavities,” Opt. Express18(23), 23844–23856 (2010). [CrossRef] [PubMed]
  25. E. Kuramochi, H. Taniyama, T. Tanabe, K. Kawasaki, Y. G. Roh, and M. Notomi, “Ultrahigh-Q one-dimensional photonic crystal nanocavities with modulated mode-gap barriers on SiO2 claddings and on air claddings,” Opt. Express18(15), 15859–15869 (2010). [CrossRef] [PubMed]
  26. K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics4(7), 477–483 (2010). [CrossRef]
  27. M. Notomi, “Manipulating light with strongly modulated photonic crystals,” Rep. Prog. Phys.73(9), 096501 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited