OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 21 — Oct. 10, 2011
  • pp: 20035–20047

General properties of two-dimensional conformal transformations in electrostatics

Yong Zeng, Jinjie Liu, and Douglas H. Werner  »View Author Affiliations

Optics Express, Vol. 19, Issue 21, pp. 20035-20047 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (790 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Electrostatic properties of two-dimensional nanosystems can be completely described by their non-trivial geometry modes. In this paper we prove that these modes as well as the corresponding eigenvalues are invariant under any conformal transformation. This invariance suggests a new way to study electrostatic conformal transformations, while also providing an in-depth interpretation of the behavior exhibited by singular plasmonic nanoparticles.

© 2011 OSA

OCIS Codes
(000.3860) General : Mathematical methods in physics
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Physical Optics

Original Manuscript: May 27, 2011
Revised Manuscript: July 13, 2011
Manuscript Accepted: September 17, 2011
Published: September 29, 2011

Yong Zeng, Jinjie Liu, and Douglas H. Werner, "General properties of two-dimensional conformal transformations in electrostatics," Opt. Express 19, 20035-20047 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006). [CrossRef] [PubMed]
  2. U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006). [CrossRef] [PubMed]
  3. U. Leonhardt and T. G. Philbin, “Transformation optics and the geometry of light,” Prog. Opt. 53, 69–152 (2009). [CrossRef]
  4. D.-H. Kwon and D. H. Werner, “Transformation electromagnetics: an overview of the theory and its application,” IEEE Antennas Propag. Mag. 52, 24–45 (2010). [CrossRef]
  5. M. Kadic, S. Guenneau, and S. Enoch, “Transformational plasmonics: cloak, concentrator and rotator for SPPs,” Opt. Express 18, 12027–12032 (2010). [CrossRef] [PubMed]
  6. J. Renger, M. Kadic, G. Dupont, S. S. Acimovic, S. Guenneau, R. Quidant, and S. Enoch, “Hidden progress: broadband plasmonic invisibility,” Opt. Express 18, 15757–15768 (2010). [CrossRef] [PubMed]
  7. D.-H. Kwon and D. H. Werner, “Transformation optical designs for wave collimators, flat lenses and right-angle bends,” N. J. Phys. 10, 115023 (2008). [CrossRef]
  8. H. Chen, C. T. Chan, and P. Sheng, “Transformation optics and metamaterials,” Nat. Mater. 9, 387–396 (2010). [CrossRef] [PubMed]
  9. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006). [CrossRef] [PubMed]
  10. R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366–369 (2009). [CrossRef] [PubMed]
  11. T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328, 337–339 (2010). [CrossRef] [PubMed]
  12. M. W. McCall, A. Favaro, P. Kinsler, and A. Boardman, “A spacetime cloak, or a history editor,” J. Opt. 13, 024003 (2011). [CrossRef]
  13. E. E. Narimanov and A. V. Kildishev, “Optical black hole: broadband omnidirectional light absorber,” Appl. Phys. Lett. 95, 041106 (2009). [CrossRef]
  14. M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Phys. Rev. Lett. 100, 063903 (2008). [CrossRef] [PubMed]
  15. D.-H. Kwon and D. H. Werner, “Polarization splitter and polarization rotator designs based on transformation optics,” Opt. Express 16, 18731–18738 (2008). [CrossRef]
  16. J. D. Jackson, Classical Electrodynamics, 3rd ed. (John Wiley & Sons, 2001).
  17. J. B. Pendry and S. A. Ramakrishna, “Near field lenses in two dimensions,” J. Phys.: Condens. Matter 14, 8463–8479 (2002). [CrossRef]
  18. J. B. Pendry and S. A. Ramakrishna, “Focusing light with negative refractive index,” J. Phys.: Condens. Matter 15, 6345–6364 (2003). [CrossRef]
  19. S. Guenneau, B. Gralak, and J. B. Pendry, “Perfect corner reflector,” Opt. Lett. 30, 1204–1206 (2005). [CrossRef] [PubMed]
  20. S. Guenneau, A. C. Vutha, and S. A. Ramakrishna, “Negative refraction in 2-D checkerboards by mirror antisymmetry and 3-D corner lenses,” N. J. Phys. 7, 164 (2005). [CrossRef]
  21. B. Gralak and S. Guenneau, “Transfer matrix method for point sources radiating in classes of negative refractive index materials with 2n-fold antisymmetry,” Waves Random Complex Media 17, 581–614 (2007). [CrossRef]
  22. A. Aubry, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Broadband plasmonic device concentrating the energy at the nanoscale: the crescent-shaped cylinder,” Phys. Rev. B 82, 125430 (2010). [CrossRef]
  23. A. Aubry, D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, S. A. Maier, and J. B. Pendry, “Plasmonic light-harvesting devices over the whole visible spectrum,” Nano Lett. 10, 2574–2579 (2010). [CrossRef] [PubMed]
  24. Y. Luo, J. B. Pendry, and A. Aubry, “Surface plasmons and singularities,” Nano Lett. 10, 4186–4191 (2010). [CrossRef] [PubMed]
  25. A. Aubry, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Conformal transformation applied to plasmonics beyond the quasistatic limit,” Phys. Rev. B 82, 205109 (2010). [CrossRef]
  26. A. Aubry, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Interaction between plasmonic nanoparticles revisited with transformation optics,” Phys. Rev. Lett. 105, 233901 (2010). [CrossRef]
  27. D. Y. Lei, A. Aubry, S. A. Maier, and J. B. Pendry, “Broadband nano-focusing of light using kissing nanowires,” N. J. Phys. 12, 093030 (2010). [CrossRef]
  28. D. J. Bergman and D. Stroud, in Solid State Physics, H. Ehrenreich and D. Turnbull, eds. (Academic, 1992), Vol.  46, pp. 148–270. [CrossRef]
  29. G. W. Milton, The Theory of Composites (Cambridge University Press, 2002). [CrossRef]
  30. D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90, 027402 (2003). [CrossRef] [PubMed]
  31. M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Localization versus delocalization of surface plasmons in nanosystems: can one state have both characteristics?” Phys. Rev. Lett. 87, 167401 (2001). [CrossRef] [PubMed]
  32. M. I. Stockman, D. J. Bergman, and T. Kobayashi, “Coherent control of nanoscale localization of ultrafast optical excitation in nanosystems,” Phys. Rev. B 69, 054202 (2004). [CrossRef]
  33. D. J. Bergman, “The dielectric constant of a simple cubic array of identical spheres,” J. Phys. C: Solid State Phys. 12, 4947–4960 (1979). [CrossRef]
  34. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, 1998). [CrossRef]
  35. Y. Zeng, Q. Wu, and D. H. Werner, “Electrostatic theory for designing lossless negative permittivity metamaterials,” Opt. Lett. 35, 1431–1433 (2010). [CrossRef] [PubMed]
  36. F. Wang and Y. R. Shen, “General properties of local plasmons in metal nanostructures,” Phys. Rev. Lett. 97, 206806 (2006). [CrossRef] [PubMed]
  37. D. R. Fredkin and I. D. Mayergoyz, “Resonant behavior of dielectric objects (electrostatic resonances),” Phys. Rev. Lett. 91, 253902 (2003). [CrossRef]
  38. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–314 (2005). [CrossRef]
  39. P. B. Catrysse and S. Fan, “Understanding the dispersion of coaxial plasmonic structures through a connection with the planar metal-insulator-metal geometry,” Appl. Phys. Lett. 94, 231111 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited