OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 21 — Oct. 10, 2011
  • pp: 20048–20053

Monolithically integrated heterodyne optical phase-lock loop with RF XOR phase detector

Robert J. Steed, Francesca Pozzi, Martyn J. Fice, Cyril C. Renaud, David C. Rogers, Ian F. Lealman, David G. Moodie, Paul J. Cannard, Colm Lynch, Lilianne Johnston, Michael J. Robertson, Richard Cronin, Leon Pavlovic, Luka Naglic, Matjaz Vidmar, and Alwyn J. Seeds  »View Author Affiliations


Optics Express, Vol. 19, Issue 21, pp. 20048-20053 (2011)
http://dx.doi.org/10.1364/OE.19.020048


View Full Text Article

Enhanced HTML    Acrobat PDF (1075 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present results for an heterodyne optical phase-lock loop (OPLL), monolithically integrated on InP with external phase detector and loop filter, which phase locks the integrated laser to an external source, for offset frequencies tuneable between 0.6 GHz and 6.1 GHz. The integrated semiconductor laser emits at 1553 nm with 1.1 MHz linewidth, while the external laser has a linewidth less than 150 kHz. To achieve high quality phase locking with lasers of these linewidths, the loop delay has been made less than 1.8 ns. Monolithic integration reduces the optical path delay between the laser and photodiode to less than 20 ps. The electronic part of the OPLL was implemented using a custom-designed feedback circuit with a propagation delay of ~1 ns and an open-loop bandwidth greater than 1 GHz. The heterodyne signal between the locked slave laser and master laser has phase noise below −90 dBc/Hz for frequency offsets greater than 20 kHz and a phase error variance in 10 GHz bandwidth of 0.04 rad2.

© 2011 OSA

OCIS Codes
(060.1660) Fiber optics and optical communications : Coherent communications
(130.0130) Integrated optics : Integrated optics
(250.0250) Optoelectronics : Optoelectronics
(250.5300) Optoelectronics : Photonic integrated circuits
(060.2840) Fiber optics and optical communications : Heterodyne
(250.5960) Optoelectronics : Semiconductor lasers

ToC Category:
Integrated Optics

History
Original Manuscript: June 13, 2011
Revised Manuscript: August 2, 2011
Manuscript Accepted: August 29, 2011
Published: September 29, 2011

Citation
Robert J. Steed, Francesca Pozzi, Martyn J. Fice, Cyril C. Renaud, David C. Rogers, Ian F. Lealman, David G. Moodie, Paul J. Cannard, Colm Lynch, Lilianne Johnston, Michael J. Robertson, Richard Cronin, Leon Pavlovic, Luka Naglic, Matjaz Vidmar, and Alwyn J. Seeds, "Monolithically integrated heterodyne optical phase-lock loop with RF XOR phase detector," Opt. Express 19, 20048-20053 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-21-20048


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. H. Enloe and J. L. Rodda, “Laser phase-locked loop,” Proc. IEEE53(2), 165–166 (1965). [CrossRef]
  2. R. C. Steele, “Optical phase-locked loop using semiconductor laser diodes,” Electron. Lett.19(2), 69–71 (1983). [CrossRef]
  3. A. J. Seeds and K. J. Williams, “Microwave photonics,” J. Lightwave Technol.24(12), 4628–4641 (2006). [CrossRef]
  4. P. G. Goetz, H. Eisele, K. C. Syao, and P. Bhattacharya, “1.55μm optical phase-locked loop with integrated p-i-n/HBT photoreceiver in a flexible development platform,” Microw. Opt. Technol. Lett.15(1), 4–7 (1997). [CrossRef]
  5. J. M. Kahn, “1 Gbit/s PSK homodyne transmission system using phase-locked semiconductor lasers,” IEEE Photon. Technol. Lett.1(10), 340–342 (1989). [CrossRef]
  6. L. N. Langley, M.D. Elkin, C. Edge, M. J. Wale, U. Gilese, X. Huang, and A. J. Seeds, “Packaged semiconductor laser optical phase-locked loop (OPLL) for photonic generation, processing and transmission of microwave signals,” IEEE Trans. Microw. Theory Tech.47(7), 1257–1264 (1999).
  7. R. J. Steed, L. Ponnampalam, M. J. Fice, C. C. Renaud, D. C. Rogers, D. G. Moodie, G. D. Maxwell, I. F. Lealman, M. J. Robertson, L. Pavlovic, L. Naglic, M. Vidmar, and A. J. Seeds, “Hybrid integrated optical phase-lock loops for photonic terahertz sources,” IEEE J. Sel. Top. Quantum Electron.17(1), 210–217 (2011). [CrossRef]
  8. F. M. Gardner, Phaselock Techniques (Wiley-Blackwell, 2005).
  9. S. Ristic, A. Bhardwaj, M. J. Rodwell, L. A. Coldren, and L. A. Johansson, “An optical phase-locked loop photonic integrated circuit,” J. Lightwave Technol.28(4), 526–538 (2010). [CrossRef]
  10. R. T. Ramos and A. J. Seeds, “Delay, linewidth and bandwidth limitations in optical phase-locked loop design,” Electron. Lett.26(6), 389 (1990). [CrossRef]
  11. L. A. Johansson and A. J. Seeds, “Millimeter-wave modulated optical signal generation with high spectral purity and wide locking bandwidth using a fiber-integrated optical phase-lock loop,” IEEE Photon. Technol. Lett.12(6), 690–692 (2000). [CrossRef]
  12. C. C. Renaud, M. Robertson, D. Rogers, R. Firth, P. Cannard, R. Moore, and A. J. Seeds, “Nanosecond channel-switching exact optical frequency synthesizer using an optical injection phase-locked loop (OIPLL),” IEEE Photon. Technol. Lett.16(3), 903–905 (2004). [CrossRef]
  13. R. T. Ramos and A. J. Seeds, “Fast heterodyne optical phase-lock loop using double quantum well laser diodes,” Electron. Lett.28(1), 82–83 (1992). [CrossRef]
  14. L. Ponnampalam, M. J. Fice, F. Pozzi, C. C. Renaud, D. C. Rogers, I. F. Lealman, D. G. Moodie, P. J. Cannard, C. Lynch, L. Johnston, M. J. Robertson, R. Cronin, L. Pavlovic, L. Naglic, M. Vidmar, and A. J. Seeds, “Monolithically integrated photonic heterodyne system,” J. Lightwave Technol.29(15), 2229–2234 (2011). [CrossRef]
  15. L. Naglič, L. Pavlovič, B. Bategelj, and M. Vidmar, “Improved phase detector for electro-optical phase-locked loops,” Electron. Lett.44(12), 758 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited