OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 21 — Oct. 10, 2011
  • pp: 20054–20068

Beamed Raman: directional excitation and emission enhancement in a plasmonic crystal double resonance SERS substrate

Yizhuo Chu, Wenqi Zhu, Dongxing Wang, and Kenneth B. Crozier  »View Author Affiliations


Optics Express, Vol. 19, Issue 21, pp. 20054-20068 (2011)
http://dx.doi.org/10.1364/OE.19.020054


View Full Text Article

Enhanced HTML    Acrobat PDF (3203 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The angular dependencies of the local field enhancement and the Raman emission enhancement are investigated, numerically and experimentally, for a plasmonic crystal double resonance SERS substrate consisting of a periodic array of gold disks above a gold film. We find that the local field enhancement is very sensitive to the incident angle. The Raman emission enhancement has a strong angular dependence on the detection direction, with the substrate “beaming” the Raman emission so that different Raman lines have different far-field patterns. We demonstrate that a stronger SERS signal results when the plasmonic substrate is illuminated with a collimated, rather than focused, laser beam.

© 2011 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(240.6695) Optics at surfaces : Surface-enhanced Raman scattering

ToC Category:
Optics at Surfaces

History
Original Manuscript: June 16, 2011
Revised Manuscript: August 4, 2011
Manuscript Accepted: August 4, 2011
Published: September 29, 2011

Citation
Yizhuo Chu, Wenqi Zhu, Dongxing Wang, and Kenneth B. Crozier, "Beamed Raman: directional excitation and emission enhancement in a plasmonic crystal double resonance SERS substrate," Opt. Express 19, 20054-20068 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-21-20054


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007)
  2. K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem.58(1), 267–297 (2007). [CrossRef] [PubMed]
  3. Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett.93(18), 181108 (2008). [CrossRef]
  4. E. C. Le Ru and P. G. Etchegoin, “Rigorous justification of the |E|4 enhancement factor in surface enhanced Raman spectroscopy,” Chem. Phys. Lett.423(1-3), 63–67 (2006). [CrossRef]
  5. D. L. Jeanmaire and R. P. Van Duyne, “Surface Raman spectroelectrochemistry. Heterocyclic, aromatic, and aliphatic-amines adsorbed on anodized silver electrode,” J. Electroanal. Chem.84(1), 1–20 (1977). [CrossRef]
  6. P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. 1(1), 601–626 (2008). [CrossRef] [PubMed]
  7. A. D. McFarland, M. A. Young, J. A. Dieringer, and R. P. Van Duyne, “Wavelength-scanned surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. B109(22), 11279–11285 (2005). [CrossRef] [PubMed]
  8. Y. Chu, M. G. Banaee, and K. B. Crozier, “Double-resonance plasmon substrates for surface-enhanced Raman scattering with enhancement at excitation and stokes frequencies,” ACS Nano4(5), 2804–2810 (2010). [CrossRef] [PubMed]
  9. J. B. Jackson, S. L. Westcott, L. R. Hirsch, J. L. West, and N. J. Halas, “Controlling the surface enhanced Raman effect via the nanoshell geometry,” Appl. Phys. Lett.82(2), 257–259 (2003). [CrossRef]
  10. C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett.5(8), 1569–1574 (2005). [CrossRef] [PubMed]
  11. M. G. Banaee and K. B. Crozier, “Gold nanorings as substrates for surface-enhanced Raman scattering,” Opt. Lett.35(5), 760–762 (2010). [CrossRef] [PubMed]
  12. K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys. Condens. Matter14(18), R597–R624 (2002). [CrossRef]
  13. M. G. Banaee and K. B. Crozier, “Mixed dimer double-resonance substrates for surface-enhanced Raman spectroscopy,” ACS Nano5(1), 307–314 (2011). [CrossRef] [PubMed]
  14. W. Zhu, M. G. Banaee, D. Wang, Y. Chu, and K. B. Crozier, “Lithographically fabricated optical antennas with gaps well below 10 nm,” Small7(13), 1761–1766 (2011). [CrossRef] [PubMed]
  15. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett.78(9), 1667–1670 (1997). [CrossRef]
  16. H. X. Xu, E. J. Bjerneld, M. Kall, and L. Borjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett.83(21), 4357–4360 (1999). [CrossRef]
  17. T. H. Reilly, S. Chang, J. D. Corbman, G. C. Schatz, and K. L. Rowlen, “Quantitative Evaluation of Plasmon Enhanced Raman Scattering from Nanoaperture Arrays,” J. Phys. Chem. C111(4), 1689–1694 (2007). [CrossRef]
  18. Y. Chu and K. B. Crozier, “Experimental study of the interaction between localized and propagating surface plasmons,” Opt. Lett.34(3), 244–246 (2009). [CrossRef] [PubMed]
  19. Y. Chu, D. Wang, W. Zhu, and K. B. Crozier, “Double resonance surface enhanced Raman scattering substrates: an intuitive coupled oscillator model,” Opt. Express19(16), 14919–14928 (2011). [CrossRef]
  20. T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics2(4), 234–237 (2008). [CrossRef]
  21. T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Enhanced directional excitation and emission of single emitters by a nano-optical Yagi-Uda antenna,” Opt. Express16(14), 10858–6 (2008). [CrossRef] [PubMed]
  22. T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi_Uda antenna,” Nat. Photonics4(5), 315 (2010). [CrossRef]
  23. J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, and A. E. Russell, “Angle-resolved surface-enhanced Raman scattering on metallic nanostructured plasmonic crystals,” Nano Lett.5(11), 2262–2267 (2005). [CrossRef] [PubMed]
  24. B. Liu, D. Wang, C. Shi, K. B. Crozier, and T. Yang, “Vertical optical antennas integrated with spiral ring gratings for large local electric field enhancement and directional radiation,” Opt. Express19(11), 10049–10056 (2011). [CrossRef] [PubMed]
  25. A. Ahmed and R. Gordon, “Directivity enhanced Raman spectroscopy using nanoantennas,” Nano Lett.11(4), 1800–1803 (2011). [CrossRef] [PubMed]
  26. D. Wang, T. Yang, and K. B. Crozier, “Optical antennas integrated with concentric ring gratings: electric field enhancement and directional radiation,” Opt. Express19(3), 2148–2157 (2011). [CrossRef] [PubMed]
  27. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972). [CrossRef]
  28. “Bloch BCs in broadband sweeps” (Lumerical Solutions, Inc.) http://www.lumerical.com/fdtd_online_help/user_guide_bloch_broadband_sweep.php
  29. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge, 2006)
  30. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater.8(9), 758–762 (2009). [CrossRef] [PubMed]
  31. A. Ghoshal, I. Divliansky, and P. G. Kik, “Experimental observation of mode-selective anticrossing in surface-plasmon-coupled metal nanoparticle arrays,” Appl. Phys. Lett.94(17), 171108 (2009). [CrossRef]
  32. J. D. Jackson, Classical electrodynamics (Wiley, 1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited