OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 21 — Oct. 10, 2011
  • pp: 20069–20078

Characteristics of embedded-core hollow optical fiber

Chunying Guan, Fengjun Tian, Qiang Dai, and Libo Yuan  »View Author Affiliations

Optics Express, Vol. 19, Issue 21, pp. 20069-20078 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1072 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a novel embedded-core hollow optical fiber composed of a central air hole, a semi-elliptical core, and an annular cladding. The fiber characteristics are investigated based on the finite element method (FEM), including mode properties, birefringence, confinement loss, evanescent field and bending loss. The results reveal that the embedded-core hollow optical fiber has a non-zero cut-off frequency for the fundamental mode. The birefringence of the hollow optical fiber is insensitive to the size of the central air hole and ultra-sensitive to the thickness of the cladding between the core and the air hole. Both thin cladding between the core and the air hole and small core ellipticity lead to high birefringence. An ultra-low birefringence fiber can be achieved by selecting a proper ellipticity of the core. The embedded-core hollow optical fiber holds a strong evanescent field due to special structure of thin cladding and therefore it is of importance for potential applications such as gas and biochemical sensors. The bending losses are measured experimentally. The bending loss strongly depends on bending orientations of the fiber. The proposed fiber can be used as polarization interference devices if the orientation angle of the fiber core is neither 0° nor 90°.

© 2011 OSA

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(060.2420) Fiber optics and optical communications : Fibers, polarization-maintaining
(060.4005) Fiber optics and optical communications : Microstructured fibers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: July 15, 2011
Revised Manuscript: August 29, 2011
Manuscript Accepted: September 1, 2011
Published: September 29, 2011

Chunying Guan, Fengjun Tian, Qiang Dai, and Libo Yuan, "Characteristics of embedded-core hollow optical fiber," Opt. Express 19, 20069-20078 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Su, T. H. Lee, and S. R. Elliott, “Evanescent-wave excitation of surface-enhanced Raman scattering substrates by an optical-fiber taper,” Opt. Lett. 34(17), 2685–2687 (2009). [CrossRef] [PubMed]
  2. P. Polynkin, A. Polynkin, N. Peyghambarian, and M. Mansuripur, “Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels,” Opt. Lett. 30(11), 1273–1275 (2005). [CrossRef] [PubMed]
  3. S. T. Huntington, K. A. Nugent, A. Roberts, P. Mulvaney, and K. M. Lo, “Field characterization of a D-shaped optical fiber using scanning near-field optical microscopy,” J. Appl. Phys. 82(2), 510 (1997). [CrossRef]
  4. P. St. J. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003). [CrossRef] [PubMed]
  5. T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22(13), 961–963 (1997). [CrossRef] [PubMed]
  6. A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett. 25(18), 1325–1327 (2000). [CrossRef] [PubMed]
  7. K. Hansen, “Dispersion flattened hybrid-core nonlinear photonic crystal fiber,” Opt. Express 11(13), 1503–1509 (2003). [CrossRef] [PubMed]
  8. T. G. Euser, J. S. Y. Chen, M. Scharrer, P. St. J. Russell, N. J. Farrer, and P. J. Sadler, “Quantitative broadband chemical sensing in air-suspended solid-core fibers,” J. Appl. Phys. 103(10), 103108 (2008). [CrossRef]
  9. L. Fu, B. K. Thomas, and L. Dong, “Efficient supercontinuum generations in silica suspended core fibers,” Opt. Express 16(24), 19629–19642 (2008). [CrossRef] [PubMed]
  10. C. Markos, W. Yuan, K. Vlachos, G. E. Town, and O. Bang, “Label-free biosensing with high sensitivity in dual-core microstructured polymer optical fibers,” Opt. Express 19(8), 7790–7798 (2011). [CrossRef] [PubMed]
  11. A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, “Suspended-core holey fiber for evanescent-field sensing,” Opt. Eng. 46(1), 010503 (2007). [CrossRef]
  12. M. Hautakorpi, M. Mattinen, and H. Ludvigsen, “Surface-plasmon-resonance sensor based on three-hole microstructured optical fiber,” Opt. Express 16(12), 8427–8432 (2008). [CrossRef] [PubMed]
  13. X. Zhang, R. Wang, F. M. Cox, B. T. Kuhlmey, and M. C. J. Large, “Selective coating of holes in microstructured optical fiber and its application to in-fiber absorptive polarizers,” Opt. Express 15(24), 16270–16278 (2007). [CrossRef] [PubMed]
  14. S. Sudo, I. Yokohama, H. Yasaka, Y. Sakai, and T. Ikegami, “Optical fiber with sharp optical absorptions by vibrational-rotational absorption of C2H2 molecules,” IEEE Photon. Technol. Lett. 2(2), 128–131 (1990). [CrossRef]
  15. S. H. Lee, B. H. Kim, and W. T. Han, “Effect of filler metals on the temperature sensitivity of side-hole fiber,” Opt. Express 17(12), 9712–9717 (2009). [CrossRef] [PubMed]
  16. D. S. Moon, B. H. Kim, A. Lin, G. Sun, Y. G. Han, W. T. Han, and Y. Chung, “The temperature sensitivity of Sagnac loop interferometer based on polarization maintaining side-hole fiber,” Opt. Express 15(13), 7962–7967 (2007). [CrossRef] [PubMed]
  17. A. Cucinotta, S. Selleri, L. Vincetti, and M. Zoboli, “Holey fiber analysis through the finite-element method,” IEEE Photon. Technol. Lett. 14(11), 1530–1532 (2002). [CrossRef]
  18. J. W. Fleming, “Dispersion in GeO2-SiO2 glasses,” Appl. Opt. 23(24), 4486–4493 (1984). [CrossRef] [PubMed]
  19. I. K. Hwang, Y. H. Lee, K. Oh, and D. Payne, “High birefringence in elliptical hollow optical fiber,” Opt. Express 12(9), 1916–1923 (2004). [CrossRef] [PubMed]
  20. P. L. Teixeira and W. C. Chew, “Systematic derivation of anisotropic PML absorbing media in cylindrical and spherical coordinates,” IEEE Microw. Guid. Wave Lett. 7(11), 371–373 (1997). [CrossRef]
  21. M. Heiblum and J. H. Harris, “Analysis of curved optical waveguides by conformal transformation,” IEEE J. Quantum Electron. QE-11(2), 75–83 (1975). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited