OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 21 — Oct. 10, 2011
  • pp: 20088–20096

Free carrier accumulation during direct laser writing in chalcogenide glass by light filamentation

Ophélie Caulier, David Le Coq, Laurent Calvez, Eugène Bychkov, and Pascal Masselin  »View Author Affiliations

Optics Express, Vol. 19, Issue 21, pp. 20088-20096 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1020 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present direct laser writing of channels in chalcogenide glass under light filamentation conditions. Because of the intrinsic properties of the filament, the positive refractive index profile of the channels exhibits a cylindrical symmetry of high quality. The role of the repetition rate is also investigated. It is shown that if the time separation between pulses is shorter than the lifetime of the plasma, the free carriers accumulate and induce a larger variation of the refractive index.

© 2011 OSA

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(160.2750) Materials : Glass and other amorphous materials

ToC Category:
Laser Microfabrication

Original Manuscript: July 19, 2011
Revised Manuscript: August 19, 2011
Manuscript Accepted: August 19, 2011
Published: September 29, 2011

Ophélie Caulier, David Le Coq, Laurent Calvez, Eugène Bychkov, and Pascal Masselin, "Free carrier accumulation during direct laser writing in chalcogenide glass by light filamentation," Opt. Express 19, 20088-20096 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008). [CrossRef]
  2. G. D. Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A, Pure Appl. Opt. 11, 013001 (2009). [CrossRef]
  3. S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A: Mater. Sci. Process. 77, 109–111 (2003). [CrossRef]
  4. Y. Li, K. Yamada, T. Ishizuka, W. Watanabe, K. Itoh, and Z. Zhou, “Single femtosecond pulse holography using polymethyl methacrylate,” Opt. Express 10, 1173–1178 (2002). [PubMed]
  5. S. Sowa, W. Watanabe, T. Tamaki, J. Nishii, and K. Itoh, “Symmetric waveguides in poly(methyl methacrylate) fabricated by femtosecond laser pulses,” Opt. Express 14, 291–297 (2006). [CrossRef] [PubMed]
  6. J. Burghoff, C. Grebing, S. Nolte, and A. Tunnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate,” Appl. Phys. Lett. 89, 081108 (2006). [CrossRef]
  7. T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B: Lasers Opt. 100, 131–135 (2010). [CrossRef]
  8. A. Benayas, W. Silva, A. Ródenas, C. Jacinto, J. Vázquez de Aldana, F. Chen, Y. Tan, R. Thomsom, N. Psaila, D. Reid, G. Torchia, A. Kar, and D. Jaque, “Ultrafast laser writing of optical waveguides in ceramic Yb:YAG: a study of thermal and non-thermal regimes,” Appl. Phys. A: Mater. Sci. Process. 104, 301–309 (2011). [CrossRef]
  9. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729–1731 (1996). [CrossRef] [PubMed]
  10. R. Osellame, N. Chiodo, V. Maselli, A. Yin, M. Zavelani-Rossi, G. Cerullo, P. Laporta, L. Aiello, S. D. Nicola, P. Ferraro, A. Finizio, and G. Pierattini, “Optical properties of waveguides written by a 26 MHz stretched cavity ti:sapphire femtosecond oscillator,” Opt. Express 13, 612–620 (2005). [CrossRef] [PubMed]
  11. M. Ams, G. D. Marshall, and M. J. Withford, “Study of the influence of femtosecond laser polarisation on direct writing of waveguides,” Opt. Express 14, 13158–13163 (2006). [CrossRef] [PubMed]
  12. A. Zakery and S. R. Elliott, Optical Nonlinearities in Chalcogenide Glasses and Their Applications, Springer Series in Optical Sciences (Springer, 2007).
  13. V. F. Kokorina, Glasses for Infrared Optics (CRC Press, 1996).
  14. D. L. Coq, K. Michel, J. Keirsse, C. Boussard-Plédel, G. Fonteneau, B. Bureau, J.-M. L. Quéré, O. Sire, and J. Lucas, “Infrared glass fibers for in-situ sensing, chemical and biochemical reactions,” C. R. Chim. 5, 907–913 (2002). [CrossRef]
  15. L. Labadie, C. Vigreux-Bercovici, A. Pradel, P. Kern, B. Arezki, and J.-E. Broquin, “M-lines characterization of selenide and telluride thick films for mid-infrared interferometry,” Opt. Express 14, 8459–8469 (2006). [CrossRef] [PubMed]
  16. O. M. Efimov, L. B. Glebov, K. A. Richardson, E. V. Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Brunéel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17, 379–386 (2001). [CrossRef]
  17. L. Petit, N. Carlie, T. Anderson, M. Couzi, J. Choi, M. Richardson, and K. Richardson, “Effect of ir femtosecond laser irradiation on the structure of new sulfo-selenide glasses,” Opt. Mater. 29, 1075–1083 (2007). [CrossRef]
  18. M. Hughes, W. Yang, and D. Hewak, “Fabrication and characterization of femtosecond laser written waveguides in chalcogenide glass.” Appl. Phys. Lett. 90, 131113 (2007). [CrossRef]
  19. N. D. Psaila, R. R. Thomson, H. T. Bookey, A. K. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and S. Shen, “Er:Yb-doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett. 90, 131102 (2007). [CrossRef]
  20. P. Masselin, D. L. Coq, and E. Bychkov, “Refractive index variations induced by femtosecond laser direct writing in the bulk of As2S3 glass at high repetition rate,” Opt. Mater. 33, 872–876 (2011). [CrossRef]
  21. S. Eaton, H. Zhang, P. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13, 4708–4716 (2005). [CrossRef] [PubMed]
  22. R. R. Gattass, L. R. Cerami, and E. Mazur, “Micromachining of bulk glass with bursts of femtosecond laser pulses at variable repetition rates,” Opt. Express 14, 5279–5284 (2006). [CrossRef] [PubMed]
  23. L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89, 186601 (2002).
  24. A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007). [CrossRef]
  25. S. L. Chin, Femtosecond Laser Filamentation (Springer, New York, 2010). [CrossRef]
  26. G. Méchain, A. Couairon, Y.-B. André, C. D’Amico, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, and R. Sauerbrey, “Long-range self-channeling of infrared laser pulses in air: a new propagation regime without ionization,” Appl. Phys. B: Lasers Opt. 79, 379–382 (2004). [CrossRef]
  27. S. Tzortzakis, L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and L. Bergé, “Self-guided propagation of ultrashort IR laser pulses in fused silica,” Phys. Rev. Lett. 87, 213902 (2001). [CrossRef] [PubMed]
  28. P. Masselin, D. L. Coq, E. Bychkov, E. Lepine, C. Lin, and L. Calvez, “Laser filamentation in chalcogenide glass,” (SPIE, 2010), Vol. 7993, p. 79931B.
  29. I. Blonskyi, V. Kadan, O. Shpotyuk, M. Iovu, and I. Pavlov, “Femtosecond filamentation in chalcogenide glasses limited by two-photon absorption,” Opt. Mater. 32, 1553–1557 (2010). [CrossRef]
  30. P. Masselin, D. L. Coq, L. Calvez, E. Petracovschi, E. Lépine, E. Bychkov, and X. Zhang, “CsCl effect on the optical properties of the 80 GeS2 - 20 Ga2S3 base glass,” submitted to Appl. Phys. A: Mater. Sci. Process.
  31. A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum. 82, 033703 (2011). [CrossRef] [PubMed]
  32. N. F. Mott and E. A. Davis, Electronic Processes in Non-crystalline Materials, 2nd ed. (Clarendon Press, 1979).
  33. G. Pfister and H. Scher, “Time-dependent electrical transport in amorphous solids: As2Se3,” Phys. Rev. B 15, 2062–2083 (1977). [CrossRef]
  34. D. Gibbons and W. Spear, “Electron hopping transport and trapping phenomena in orthorhombic sulphur crystals,” J. Phys. Chem. Solids 27, 1917–1925 (1966). [CrossRef]
  35. M. Wuttig and N. Yamada, “Phase-change materials for rewriteable data storage,” Nature Mater. 6, 824–832 (2007). [CrossRef]
  36. S. Hudgens and B. Johnson, “Overview of phase-change chalcogenide nonvolatile memory technology,” MRS Bull. 29, 829–832 (2004). [CrossRef]
  37. T. Matsunaga, J. Akola, S. Kohara, T. Honma, K. Kobayashi, E. Ikenaga, R. O. Jones, N. Yamada, M. Takata, and R. Kojima, “From local structure to nanosecond recrystallization dynamics in AgInSbTe phase-change materials,” Nature Mater. 10, 129–134 (2011). [CrossRef]
  38. R. Osellame, N. Chiodo, G. Valle, S. Taccheo, R. Ramponi, G. Cerullo, A. Killi, U. Morgner, M. Lederer, and D. Kopf, “Optical waveguide writing with a diode-pumped femtosecond oscillator,” Opt. Lett. 29, 1900–1902 (2004). [CrossRef] [PubMed]
  39. V. R. Bhardwaj, P. B. Corkum, D. M. Rayner, C. Hnatovsky, E. Simova, and R. S. Taylor, “Stress in femtosecond-laser-written waveguides in fused silica,” Opt. Lett. 29, 1312–1314 (2004). [CrossRef] [PubMed]
  40. V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, A. El-Khamhawy, and D. von der Linde, “Multiphoton ionization in dielectrics: comparison of circular and linear polarization,” Phys. Rev. Lett. 97, 237403 (2006). [CrossRef]
  41. E. Ampem-Lassen, S. T. Huntington, N. M. Dragomir, K. A. Nugent, and A. Roberts, “Refractive index profiling of axially symmetric optical fibers: a new technique,” Opt. Express 13, 3277–3282 (2005). [CrossRef] [PubMed]
  42. E. Yablonovitch and N. Bloembergen, “Avalanche ionization and the limiting diameter of filaments induced by light pulses in transparent media,” Phys. Rev. Lett. 29, 907–910 (1972). [CrossRef]
  43. J. Marburger, “Self-focusing: theory,” Prog. Quantum Electron. 4, 35–110 (1975). [CrossRef]
  44. G. Méchain, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Organizing multiple femtosecond filaments in air,” Phys. Rev. Lett. 93, 035003 (2004). [CrossRef] [PubMed]
  45. H. Schroeder and S. L. Chin, “Visualization of the evolution of multiple filaments in methanol,” Opt. Commun. 234, 399–406 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited