OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 21 — Oct. 10, 2011
  • pp: 20103–20114

High-accuracy photoreceiver frequency response measurements at 1.55 µm by use of a heterodyne phase-locked loop

Tasshi Dennis and Paul D. Hale  »View Author Affiliations


Optics Express, Vol. 19, Issue 21, pp. 20103-20114 (2011)
http://dx.doi.org/10.1364/OE.19.020103


View Full Text Article

Enhanced HTML    Acrobat PDF (824 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate a high-accuracy heterodyne measurement system for characterizing the magnitude of the frequency response of high-speed 1.55 µm photoreceivers from 2 MHz to greater than 50 GHz. At measurement frequencies below 2 GHz, we employ a phase-locked loop with a double-heterodyne detection scheme, which enables precise tuning of the heterodyne beat frequency with an RF synthesizer. At frequencies above 2 GHz the system is operated in free-run mode with thermal tuning of the laser beat frequency. We estimate the measurement uncertainties for the low frequency range and compare the measured high-frequency response of a photoreceiver to a measurement using electro-optic sampling.

© 2011 OSA

OCIS Codes
(040.5160) Detectors : Photodetectors
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.2380) Fiber optics and optical communications : Fiber optics sources and detectors
(120.3940) Instrumentation, measurement, and metrology : Metrology
(060.2840) Fiber optics and optical communications : Heterodyne

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: July 27, 2011
Revised Manuscript: September 7, 2011
Manuscript Accepted: September 15, 2011
Published: September 29, 2011

Citation
Tasshi Dennis and Paul D. Hale, "High-accuracy photoreceiver frequency response measurements at 1.55 µm by use of a heterodyne phase-locked loop," Opt. Express 19, 20103-20114 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-21-20103


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. S. Clement, P. D. Hale, D. F. Williams, J. C. M. Wang, A. Dienstfrey, and D. A. Keenan, “Calibration of sampling oscilloscopes with high-speed photodiodes,” IEEE Trans. Microw. Theory Tech.54(8), 3173–3181 (2006). [CrossRef]
  2. A. Dienstfrey, P. D. Hale, D. A. Keenan, T. S. Clement, and D. F. Williams, “Minimum-phase calibration of sampling-oscilloscopes,” IEEE Trans. Microw. Theory Tech.54(8), 3197–3208 (2006). [CrossRef]
  3. P. D. Hale, A. Dienstfrey, J. C. M. Wang, D. F. Williams, A. Lewandowski, D. A. Keenan, and T. S. Clement, “Traceable waveform calibration with a covariance-based uncertainty analysis,” IEEE Trans. Instrum. Meas.58(10), 3554–3568 (2009). [CrossRef]
  4. P. D. Hale, C. M. Wang, R. Park, and W. Y. Lau, “A transfer standard for measuring photoreceiver frequency response,” J. Lightwave Technol.14(11), 2457–2466 (1996). [CrossRef]
  5. P. D. Hale and C. M. Wang, “Calibration service of optoelectronic frequency response at 1319 nm for combined photodiode/RF power sensor transfer standards,” NIST Special Publication 250–51 (1999).
  6. J. E. Bowers and C. A. Burrus, “Ultrawide-band long-wavelength p-i-n photodetectors,” J. Lightwave Technol.5(10), 1339–1350 (1987). [CrossRef]
  7. R. T. Hawkins, M. D. Jones, S. H. Pepper, J. H. Goll, and M. K. Ravel, “Vector characterization of photodetectors, photoreceivers, and optical pulse sources by time-domain pulse response measurements,” IEEE Trans. Instrum. Meas.41(4), 467–475 (1992). [CrossRef]
  8. D. F. Williams, P. D. Hale, T. S. Clement, and J. M. Morgan, “Calibrating electro-optic sampling systems,” in IEEE MTT-S Int. Microw. Symp. Dig., vol. 3 (2001), pp. 1527–1530.
  9. D. F. Williams, A. Lewandowski, T. S. Clement, J. C. M. Wang, P. D. Hale, J. M. Morgan, D. A. Keenan, and A. Dienstfrey, “Covariance-based uncertainty analysis of the NIST electrooptic sampling system,” IEEE Trans. Microw. Theory Tech.54(1), 481–491 (2006). [CrossRef]
  10. F. Z. Xie, D. Kuhl, E. H. Böttcher, S. Y. Ren, and D. Bimberg, “Wide-band frequency response measurements of photodetectors using low-level photocurrent noise detection,” J. Appl. Phys.73(12), 8641–8646 (1993). [CrossRef]
  11. D. M. Baney, W. V. Sorin, and S. A. Newton, “High-frequency photodiode characterization using a filtered intensity noise technique,” IEEE Photon. Technol. Lett.6(10), 1258–1260 (1994). [CrossRef]
  12. S. Uehara, “Calibration of optical modulator frequency response with application to signal level control,” Appl. Opt.17(1), 68–71 (1978). [CrossRef] [PubMed]
  13. D. A. Humphreys, M. R. Harper, A. J. A. Smith, and I. M. Smith, “Vector calibration of optical reference receivers using a frequency-domain method,” IEEE Trans. Instrum. Meas.54(2), 894–897 (2005). [CrossRef]
  14. B. H. Zhang, N. H. Zhu, W. Han, J. H. Ke, H. G. Zhang, M. Ren, W. Li, and L. Xie, “Development of swept frequency method for measuring frequency response of photodetectors based on harmonic analysis,” IEEE Photon. Technol. Lett.21(7), 459–461 (2009). [CrossRef]
  15. J. Wang, U. Krüger, B. Schwarz, and K. Petermann, “Measurement of frequency response of photoreceivers using self-homodyne method,” Electron. Lett.25(11), 722–723 (1989). [CrossRef]
  16. N. H. Zhu, J. M. Wen, H. S. San, H. P. Huang, L. J. Zhao, and W. Wang, “Improved optical heterodyne methods for measuring frequency response of photodetectors,” IEEE J. Quantum Electron.42(3), 241–248 (2006). [CrossRef]
  17. L. Piccari and P. Spano, “New method for measuring ultrawide frequency response of optical detectors,” Electron. Lett.18(3), 116–118 (1982). [CrossRef]
  18. S. Kawanishi and M. Saruwatari, “A very wide-band frequency response measurement system using optical heterodyne detection,” IEEE Trans. Instrum. Meas.38(2), 569–573 (1989). [CrossRef]
  19. O. Ishida, H. Toba, and F. Kano, “Optical sweeper with double-heterodyne frequency-locked loop,” Electron. Lett.25(22), 1495–1496 (1989). [CrossRef]
  20. A. Beling, H.-G. Bach, G. G. Mekonnen, R. Kunkel, and D. Schmidt, “High-speed miniaturized photodiode and parallel-fed traveling-wave photodetectors based on InP,” IEEE J. Sel. Top. Quantum Electron.13(1), 15–21 (2007). [CrossRef]
  21. T. S. Tan, R. L. Jungerman, and S. S. Elliott, “Optical receiver and modulator frequency response measurement with a Nd:YAG ring laser heterodyne technique,” IEEE Trans. Microw. Theory Tech.37(8), 1217–1222 (1989). [CrossRef]
  22. D. A. Humphreys, “Measurement of high-speed photodiodes using DFB heterodyne system with microwave reflectometer,” in High-Speed Electronics and Optoelectronics, Proc. SPIE 1680–15, 138—152 (1992).
  23. K. J. Williams, L. Goldberg, R. D. Esman, M. Dagenais, and J. F. Weller, “6-34 GHz offset phase-locking of Nd:YAG 1319 nm nonplanar ring lasers,” Electron. Lett.25(18), 1242–1243 (1989). [CrossRef]
  24. M. Weidman, “Direct comparison transfer of microwave power sensor calibration,” NIST Technical Note 1379 (1996).
  25. L. D’Evelyn, L. Hollberg, and Z. B. Popovic, “A CPW phase-locked loop for diode-laser stabilization,” in Microwave Symposium Digest 1994, IEEE MTT-S International (1994), pp. 65–68.
  26. B. W. Silverman, Density estimation for statistics and data analysis (Chapman and Hill, London, England, 1986).
  27. B. N. Taylor and C. E. Kuyatt, “Guidelines for evaluating and expressing the uncertainty of NIST measurement results,” NIST Technical Note 1297 (1994).
  28. P. D. Hale, T. S. Clement, and D. F. Williams, “Frequency response metrology for high-speed optical receivers, in Optical Fiber Communication Conference and Exhibit, OFC Technical Digest Series (Optical Society of America, 2001), paper WQ1.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited