OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 21 — Oct. 10, 2011
  • pp: 20115–20121

CMOS compatible reconfigurable filter for high bandwidth non-blocking operation

Hugo L. R. Lira, Carl B. Poitras, and Michal Lipson  »View Author Affiliations

Optics Express, Vol. 19, Issue 21, pp. 20115-20121 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1118 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We design, fabricate and characterize a CMOS-compatible, Mach-Zehnder-coupled, second-order-microring-resonator filter with large Free Spectral Range and demonstrate non-blocking thermo-optical filter reconfiguration. The device consists of 10-μm radius silicon microring resonators, with an FSR equivalent to that of a structure consisting of 5-μm radii microrings. The structure is reconfigurable over an 8.5 nm range without blocking other channels in the network.

© 2011 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(130.4815) Integrated optics : Optical switching devices

ToC Category:
Integrated Optics

Original Manuscript: July 25, 2011
Revised Manuscript: September 3, 2011
Manuscript Accepted: September 6, 2011
Published: September 29, 2011

Hugo L. R. Lira, Carl B. Poitras, and Michal Lipson, "CMOS compatible reconfigurable filter for high bandwidth non-blocking operation," Opt. Express 19, 20115-20121 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Palais, Fiber Optic Communications (Prentice Hall, 1988).
  2. D. A. B. Miller and H. M. Ozaktas, “Limit to the bit-rate capacity of electrical interconnects from the aspect ratio of the system architecture,” J. Parallel Distrib. Comput. 41, 42–52 (1997). [CrossRef]
  3. N. Magen, A. Kolodny, U. Weiser, and N. Shamir, “Interconnect-power dissipation in a microprocessor,” in Proceedings of the 2004 International Workshop on System Level Interconnect Prediction (ACM, 2004), pp. 7–13. [CrossRef]
  4. A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput. 57, 1246–1260 (2008). [CrossRef]
  5. C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. W. Holzwarth, M. A. Popovic, H. Q. Li, H. I. Smith, J. L. Hoyt, F. X. Kartner, R. J. Ram, V. Stojanovic, and K. Asanovic, “Building Many-Core Processor-to-DRAM Networks with Monolithic CMOS Silicon Photonics,” IEEE Micro 29, 8–21 (2009). [CrossRef]
  6. Y. Goebuchi, T. Kato, and Y. Kokubun, “Fast and stable wavelength-selective switch using double-series coupled dielectric microring resonator,” IEEE Photonics Technol. Lett. 18, 538–540 (2006). [CrossRef]
  7. Q. Xu, D. Fattal, and R. G. Beausoleil, “Silicon microring resonators with 1.5-um radius,” Opt. Express 16, 4309–4315 (2008). [CrossRef] [PubMed]
  8. S. Xiao, M. H. Khan, H. Shen, and M. Qi, “A highly compact third-order silicon microring add-drop filter with a very large free spectral range, a flat passband and a low delay dispersion,” Opt. Express 15, 14765–14771 (2007). [CrossRef] [PubMed]
  9. M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett. 89, 071110–071113 (2006). [CrossRef]
  10. K. Oda, N. Takato, and H. Toba, “A wide-FSR wave-guide double-ring resonator for optical FDM transmission-systems,” J. Lightwave Technol. 9, 728–736 (1991). [CrossRef]
  11. G. Barbarossa and A. Matteo, “Novel double-ring optical-guided-wave Vernier resonator,” IEE Proc.-Optoelectron. 144, 203–208 (1997). [CrossRef]
  12. M. R. Watts, T. Barwicz, M. A. Popovic, P. T. Rakich, L. Socci, E. P. Ippen, H. I. Smith, and F. Kaertner, “Microring-Resonator Filter with Doubled Free-Spectral-Range by Two-Point Coupling,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2005), paper CMP3. [PubMed]
  13. W. Green, R. Lee, G. DeRose, A. Scherer, and A. Yariv, “Hybrid InGaAsP-InP Mach-Zehnder racetrack resonator for thermooptic switching and coupling control,” Opt. Express 13, 1651–1659 (2005). [CrossRef] [PubMed]
  14. L. Zhou and A. W. Poon, “Electrically reconfigurable silicon microring resonator-based filter with waveguide coupled feedback,” Opt. Express 15, 9194–9204 (2007). [CrossRef] [PubMed]
  15. L. Chen, N. Sherwood-Droz, and M. Lipson, “Compact bandwidth-tunable microring resonators,” Opt. Lett. 32, 3361–3363 (2007). [CrossRef] [PubMed]
  16. H. L. Lira, M. Lipson, and C. B. Poitras, “Non-Blocking Operation of a Tunable Compact Optical Filter with Large FSR,” in CLEO:2011 - Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CTuN3.
  17. B. Little, S. Chu, H. Haus, J. Foresi, and J. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997). [CrossRef]
  18. A. Melloni and M. Martinelli, “Synthesis of direct-coupled-resonators bandpass filters for WDM systems,” J. Lightwave Technol. 20, 296–303 (2002). [CrossRef]
  19. R. Orta, P. Savi, R. Tascone, and D. Trinchero, “Synthesis of multiple-ring-resonator filters for optical systems,” IEEE Photonics Technol. Lett. 7, 1447–1449 (1995). [CrossRef]
  20. H. L. R. Lira, S. Manipatruni, and M. Lipson, “Broadband hitless silicon electro-optic switch for on-chip optical networks,” Opt. Express 17, 22271–22280 (2009). [CrossRef]
  21. G. Cocorullo and I. Rendina, “Themo-optical modulation at 1.5 um in silicon etalon,” Electron. Lett. 28, 83–85 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited