OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 21 — Oct. 10, 2011
  • pp: 20122–20127

Integrated Luneburg lens via ultra-strong index gradient on silicon

Lucas H. Gabrielli and Michal Lipson  »View Author Affiliations


Optics Express, Vol. 19, Issue 21, pp. 20122-20127 (2011)
http://dx.doi.org/10.1364/OE.19.020122


View Full Text Article

Enhanced HTML    Acrobat PDF (993 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Gradient index structures are gaining increased importance with the constant development of Transformation Optics and metamaterials. Our ability to fabricate such devices, while limited, has already demonstrated the extensive capabilities of those designs, in the forms of invisibility devices, as well as illusion optics and super-lensing. In this paper we present a low loss, high index contrast lens that is integrated with conventional nanophotonic waveguides to provide improved tolerance in fiber-to-chip optical links for future communication networks. This demonstration represents a positive step in making the extraordinary capabilities of gradient index devices available for integrated optics.

© 2011 OSA

OCIS Codes
(110.2760) Imaging systems : Gradient-index lenses
(230.3120) Optical devices : Integrated optics devices

ToC Category:
Integrated Optics

History
Original Manuscript: July 25, 2011
Revised Manuscript: September 7, 2011
Manuscript Accepted: September 22, 2011
Published: September 29, 2011

Citation
Lucas H. Gabrielli and Michal Lipson, "Integrated Luneburg lens via ultra-strong index gradient on silicon," Opt. Express 19, 20122-20127 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-21-20122


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Smith, J. Mock, A. Starr, and D. Schurig, “Gradient index metamaterials,” Phys. Rev. E71, 036609 (2005). [CrossRef]
  2. R. B. Greegor, C. G. Parazzoli, J. A. Nielsen, M. A. Thompson, M. H. Tanielian, and D. R. Smith, “Simulation and testing of a graded negative index of refraction lens,” Appl. Phys. Lett.87, 091114 (2005). [CrossRef]
  3. T. Driscoll, D. N. Basov, A. F. Starr, P. M. Rye, S. Nemat-Nasser, D. Schurig, and D. R. Smith, “Free-space microwave focusing by a negative-index gradient lens,” Appl. Phys. Lett.88, 081101 (2006). [CrossRef]
  4. L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics3, 461–463 (2009). [CrossRef]
  5. J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater.8, 568–571 (2009). [CrossRef] [PubMed]
  6. R. Liu, X. M. Yang, J. G. Gollub, J. J. Mock, T. J. Cui, and D. R. Smith, “Gradient index circuit by waveguided metamaterials,” Appl. Phys. Lett.94, 073506 (2009). [CrossRef]
  7. K. Preston, N. Sherwood-Droz, J. S. Levi, H. L. R. Lira, and M. Lipson, “Design rules for WDM optical interconnects using silicon microring resonators,” (2011), submitted to Opt. Express.
  8. R. K. Luneburg, Mathematical Theory of Optics (University of California Press, 1964).
  9. U. Leonhardt and T. Philbin, Geometry and Light: The Science of Invisibility (Dover Publications, 2010).
  10. T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibres,” Electron. Lett.38, 1669 (2002). [CrossRef]
  11. V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett.28, 1302 (2003). [CrossRef] [PubMed]
  12. K. K. Lee, D. R. Lim, D. Pan, C. Hoepfner, W.-Y. Oh, K. Wada, L. C. Kimerling, K. P. Yap, and M. T. Doan, “Mode transformer for miniaturized optical circuits,” Opt. Lett.30, 498 (2005). [CrossRef] [PubMed]
  13. G. Roelkens, P. Dumon, W. Bogaerts, D. Van Thourhout, and R. Baets, “Efficient silicon-on-insulator fiber coupler fabricated using 248-nm-deep UV lithography,” IEEE Photon. Technol. Lett.17, 2613–2615 (2005). [CrossRef]
  14. A. Di Falco, S. C. Kehr, and U. Leonhardt, “Luneburg lens in silicon photonics,” Opt. Express19, 5156 (2011). [CrossRef] [PubMed]
  15. F. Zernike, “Luneburg lens for optical waveguide use,” Opt. Commun.12, 379–381 (1974). [CrossRef]
  16. N. Kundtz and D. R. Smith, “Extreme-angle broadband metamaterial lens,” Nat. Mater.9, 129–32 (2010). [CrossRef]
  17. H. F. Ma and T. J. Cui, “Three-dimensional broadband and broad-angle transformation-optics lens,” Nat. Commun.1, 124 (2010). [CrossRef] [PubMed]
  18. T. Zentgraf, Y. Liu, M. H. Mikkelsen, J. Valentine, and X. Zhang, “Plasmonic Luneburg and Eaton lenses,” Nat. Nanotechnol.6, 151–155 (2011). [CrossRef]
  19. J. Cardenas, C. B. Poitras, J. T. Robinson, K. Preston, L. Chen, and M. Lipson, “Low loss etchless silicon photonic waveguides,” Opt. Express17, 4752 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited