OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 21 — Oct. 10, 2011
  • pp: 20172–20181

Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides

Bart Kuyken, Xiaoping Liu, Richard M. Osgood Jr., Roel Baets, Günther Roelkens, and William M. J. Green  »View Author Affiliations


Optics Express, Vol. 19, Issue 21, pp. 20172-20181 (2011)
http://dx.doi.org/10.1364/OE.19.020172


View Full Text Article

Acrobat PDF (1191 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate the generation of a supercontinuum in a 2 cm long silicon wire by pumping the wire with mid-infrared picosecond pulses in the anomalous dispersion regime. The supercontinuum extends from 1535 nm up to 2525 nm for a coupled peak power of 12.7 W. It is shown that the supercontinuum originates primarily from the amplification of background noise. A detailed analysis of the spectral components which are generated through phase-matched processes is applied to extract the group velocity dispersion and fourth-order dispersion coefficient of the silicon wire waveguide.

© 2011 OSA

OCIS Codes
(130.4310) Integrated optics : Nonlinear
(320.6629) Ultrafast optics : Supercontinuum generation

ToC Category:
Ultrafast Optics

History
Original Manuscript: May 23, 2011
Revised Manuscript: September 19, 2011
Manuscript Accepted: September 25, 2011
Published: September 30, 2011

Citation
Bart Kuyken, Xiaoping Liu, Richard M. Osgood Jr., Roel Baets, Günther Roelkens, and William M. J. Green, "Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides," Opt. Express 19, 20172-20181 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-21-20172


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. C. F. Kaminski, R. S. Watt, A. D. Elder, J. H. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B92(3), 367–378 (2008). [CrossRef]
  2. I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,” Opt. Lett.26(9), 608–610 (2001). [CrossRef] [PubMed]
  3. S. V. Smirnov, J. D. Ania-Castanon, T. J. Ellingham, S. M. Kobtsev, S. Kukarin, and S. K. Turitsyn, “Optical spectral broadening and supercontinuum generation in telecom applications,” Opt. Fiber Technol.12(2), 122–147 (2006). [CrossRef]
  4. W. J. Wadsworth, A. Ortigosa-Blanch, J. C. Knight, T. A. Birks, T.-P. Martin Man, and P. St J. Russell, “Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source,” J. Opt. Soc. Am. B19(9), 2148–2155 (2002). [CrossRef]
  5. J. M. Dudley, G. Gently, and S. Coen, “Supercontinuum generation in photonic crystal,” Rev. Mod. Phys.78(4), 1135–1184 (2006). [CrossRef]
  6. A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett.87(20), 203901 (2001). [CrossRef] [PubMed]
  7. M. R. Lamont, B. Luther-Davies, D. Y. Choi, S. Madden, and B. J. Eggleton, “Supercontinuum generation in dispersion engineered highly nonlinear (γ = 10 /W/m) As2S3 chalcogenide planar waveguide,” Opt. Express16(19), 14938–14944 (2008). [CrossRef] [PubMed]
  8. R. Halir, Y. Okawachi, J. S. Levy, M. A. Foster, M. Lipson, A. L. Gaeta, “Octave spanning supercontinuum generation in CMOS compatible silicon nitride waveguides,” in CLEO, PDPA6 (2011).
  9. D. Duchesne, M. Peccianti, M. R. E. Lamont, M. Ferrera, L. Razzari, F. Légaré, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “Supercontinuum generation in a high index doped silica glass spiral waveguide,” Opt. Express18(2), 923–930 (2010). [CrossRef] [PubMed]
  10. I.-W. Hsieh, X. Chen, X. Liu, J. I. Dadap, N. C. Panoiu, C.-Y. Chou, F. Xia, W. M. Green, Y. A. Vlasov, R. M. Osgood, and Jr., “Supercontinuum generation in silicon photonic wires,” Opt. Express15(23), 15242–15249 (2007). [CrossRef] [PubMed]
  11. R. M. Osgood, N. C. Jr., J. I. Panoiu, X. Dadap, X. Liu, I.-W. Chen, E. Hsieh, W. M. Dulkeith, Green, and Y. A. Vlasov, “Engineering nonlinearities in nanoscale optical systems: physics and applications in dispersion-engineered silicon nanophotonic wires,” Adv. Opt. Photon.1(1), 162–235 (2009). [CrossRef]
  12. H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 µm wavelength,” Appl. Phys. Lett.80(3), 416–418 (2002). [CrossRef]
  13. A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850–2200 nm,” Appl. Phys. Lett.90(19), 191104 (2007). [CrossRef]
  14. X. Liu, J. B. Driscoll, J. I. Dadap, R. M. Osgood, S. Jr., Y. A. Assefa, Vlasov, and W. M. J. Green, “Self-phase modulation and nonlinear loss in silicon nanophotonic wires near the mid-infrared two-photon absorption edge,” Opt. Express19(8), 7778–7789 (2011). [CrossRef] [PubMed]
  15. X. Liu, R. M. Osgood, Y. A. Jr., Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photonics4(8), 557–560 (2010). [CrossRef]
  16. R. K. W. Lau, M. Ménard, Y. Okawachi, M. A. Foster, A. C. Turner-Foster, R. Salem, M. Lipson, and A. L. Gaeta, “Continuous-wave mid-infrared frequency conversion in silicon nanowaveguides,” Opt. Lett.36(7), 1263–1265 (2011). [CrossRef] [PubMed]
  17. S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics4(8), 561–564 (2010). [CrossRef]
  18. G. Crowder, “Infrared methods for gas detection,” in Mid-Infrared Semiconductor Optoelectronics (Springer, 2006).
  19. N. C. Panoiu, X. G. Chen, R. M. Osgood, and Jr., “Modulation Instability in Silicon Photonic Nanowires,” Opt. Lett.31(24), 3609–3611 (2006). [CrossRef] [PubMed]
  20. X. Liu, B. Kuyken, G. Roelkens, R. Baets, Y. Vlasov, R. M. Osgood Jr., W. M. J. Green, “Mid-infrared broadband modulation instability and 50dB Raman assisted parametric gain in silicon photonic wires,” in CLEO, CTuS2.pdf (2011).
  21. B. Kuyken, X. Liu, R. M. Osgood Jr., Y. Vlasov, G. Roelkens, R. Baets, and W. M. J. Green, “Frequency conversion of mid-infrared optical signals into the telecom band using nonlinear silicon nanophotonic wires,” Optical Fiber Communication Conference, OThU4 (2011).
  22. V. Raghunathan, D. Borlaug, R. R. Rice, and B. Jalali, “Demonstration of a mid-infrared silicon Raman amplifier,” Opt. Express15(22), 14355–14362 (2007). [CrossRef] [PubMed]
  23. N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A51(3), 2602–2607 (1995). [CrossRef] [PubMed]
  24. A. Mussot, E. Lantz, H. Maillotte, T. Sylvestre, C. Finot, and S. Pitois, “Spectral broadening of a partially coherent CW laser beam in single-mode optical fibers,” Opt. Express12(13), 2838–2843 (2004). [CrossRef] [PubMed]
  25. J. M. Dudley, G. Genty, F. Dias, B. Kibler, and N. Akhmediev, “Modulation instability, Akhmediev Breathers and continuous wave supercontinuum generation,” Opt. Express17(24), 21497–21508 (2009). [CrossRef] [PubMed]
  26. S. K. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron.12, 1394–1401 (2006).
  27. W. A. Zortman, D. C. Trotter, and M. R. Watts, “Silicon photonics manufacturing,” Opt. Express18(23), 23598–23607 (2010). [CrossRef] [PubMed]
  28. E. Dulkeith, F. Xia, L. Schares, W. M. J. Green, and Y. A. Vlasov, “Group index and group velocity dispersion in silicon-on-insulator photonic wires,” Opt. Express14(9), 3853–3863 (2006). [CrossRef] [PubMed]
  29. A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express14(10), 4357–4362 (2006). [CrossRef] [PubMed]
  30. R. Dekker, N. Usechak, M. Forst, and A. Driessen, “Ultrafast nonlinear all-optical processes in silicon-on-insulator waveguides,” J. Phys. D Appl. Phys.40(14), 249–271 (2007). [CrossRef]
  31. X. Liu, W. M. J. Green, X. Chen, I.-W. Hsieh, J. I. Dadap, Y. A. Vlasov, R. M. Osgood, and Jr., “Conformal dielectric overlayers for engineering dispersion and effective nonlinearity of silicon nanophotonic wires,” Opt. Lett.33(24), 2889–2891 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited