OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 21 — Oct. 10, 2011
  • pp: 20244–20250

Transport of intensity phase imaging from multiple intensities measured in unequally-spaced planes

Bindang Xue, Shiling Zheng, Linyan Cui, Xiangzhi Bai, and Fugen Zhou  »View Author Affiliations

Optics Express, Vol. 19, Issue 21, pp. 20244-20250 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (905 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A method based on the transport of intensity equation (TIE) for phase retrieval is presented, which can retrieve the optical phase from intensity measurements in multiple unequally-spaced planes in the near-field region. In this method, the intensity derivative in the TIE is represented by a linear combination of intensity measurements, and the coefficient of the combination can be expressed by explicitly analytical form related to the defocused distances. The proposed formula is a generalization of the TIE with high order intensity derivatives. The numerical experiments demonstrate that the proposed method can improve the accuracy of phase retrieval with higher-order intensity derivatives and is more convenient for practical application.

© 2011 OSA

OCIS Codes
(100.3010) Image processing : Image reconstruction techniques
(100.5070) Image processing : Phase retrieval

ToC Category:
Image Processing

Original Manuscript: July 25, 2011
Revised Manuscript: September 16, 2011
Manuscript Accepted: September 16, 2011
Published: September 30, 2011

Bindang Xue, Shiling Zheng, Linyan Cui, Xiangzhi Bai, and Fugen Zhou, "Transport of intensity phase imaging from multiple intensities measured in unequally-spaced planes," Opt. Express 19, 20244-20250 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. R. Teague, “Deterministic phase retrieval: a Green’s function solution,” J. Opt. Soc. Am. 73(11), 1434–1441 (1983). [CrossRef]
  2. T. E. Gureyev, A. Roberts, and K. A. Nugent, “Partially coherent fields, the transport-of-intensity equation, and phase uniqueness,” J. Opt. Soc. Am. A 12(9), 1942–1946 (1995). [CrossRef]
  3. A. Barty, K. A. Nugent, D. Paganin, and A. Roberts, “Quantitative optical phase microscopy,” Opt. Lett. 23(11), 817–819 (1998). [CrossRef] [PubMed]
  4. K. Ishizuka and B. Allman, “Phase measurement of atomic resolution image using transport of intensity equation,” J. Electron Microsc. (Tokyo) 54(3), 191–197 (2005). [CrossRef] [PubMed]
  5. B. E. Allman, P. J. McMahon, K. A. Nugent, D. Paganin, D. L. Jacobson, M. Arif, and S. A. Werner, “Phase radiography with neutrons,” Nature 408(6809), 158–159 (2000). [CrossRef] [PubMed]
  6. K. A. Nugent, T. E. Gureyev, D. J. Cookson, D. Paganin, and Z. Barnea, “Quantitative phase imaging using hard X rays,” Phys. Rev. Lett. 77(14), 2961–2964 (1996). [CrossRef] [PubMed]
  7. T. E. Gureyev and K. A. Nugent, “Rapid quantitative phase imaging using the transport of intensity equation,” Opt. Commun. 133(1-6), 339–346 (1997). [CrossRef]
  8. D. Paganin and K. A. Nugent, “Noninterferometric phase imaging with partially coherent light,” Phys. Rev. Lett. 80(12), 2586–2589 (1998). [CrossRef]
  9. L. J. Allen and M. P. Oxley, “Phase retrieval from series of images obtained by defocus variation,” Opt. Commun. 199(1-4), 65–75 (2001). [CrossRef]
  10. W. Xiao, M. Heng, and Z. Dazun, “Phase retrieval based on intensity transport equation,” Acta Opt. Sin. 27, 2117–2122 (2007).
  11. T. E. Gureyev, A. Roberts, and K. A. Nugent, “Phase retrieval with the transport-of-intensity equation: matrix solution with use of Zernike polynomials,” J. Opt. Soc. Am. 12(9), 1932–1941 (1995). [CrossRef]
  12. S. V. Pinhasi, R. Alimi, L. Perelmutter, and S. Eliezer, “Topography retrieval using different solutions of the transport intensity equation,” J. Opt. Soc. Am. A 27(10), 2285–2292 (2010). [CrossRef] [PubMed]
  13. J. Frank, G. Wernicke, J. Matrisch, S. Wette, J. Beneke, and S. Altmeyer, “Quantitative determination of the optical properties of phase objects by using a real-time phase retrieval technique,” Proc. SPIE 8082, 80820N, 80820N-9 (2011). [CrossRef]
  14. M. Soto and E. Acosta, “Improved phase imaging from intensity measurements in multiple planes,” Appl. Opt. 46(33), 7978–7981 (2007). [CrossRef] [PubMed]
  15. L. Waller, L. Tian, and G. Barbastathis, “Transport of Intensity phase-amplitude imaging with higher order intensity derivatives,” Opt. Express 18(12), 12552–12561 (2010). [CrossRef] [PubMed]
  16. W. X. Cong and G. Wang, “Higher-order phase shift reconstruction approach,” Med. Phys. 37(10), 5238–5242 (2010). [CrossRef] [PubMed]
  17. A. E. Knuth, The Art of Computer Programming: Volume 1: Fundamental Algorithms (Addison-Wesley Professional, 1997), pp. 38.
  18. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1996), pp. 55–61.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited