OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 21 — Oct. 10, 2011
  • pp: 20251–20257

Quantum cascade laser based standoff photoacoustic chemical detection

Xing Chen, Liwei Cheng, Dingkai Guo, Yordan Kostov, and Fow-Sen Choa  »View Author Affiliations

Optics Express, Vol. 19, Issue 21, pp. 20251-20257 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1027 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Standoff chemical detection with a distance of more than 41 feet using photoacoustic effect and quantum cascade laser (QCL) operated at relatively low power, less than 40 mW, is demonstrated for the first time. The option of using QCL provides the advantages of easy tuning and modulation besides the benefit of compact size, light weight and low power consumption. The standoff detection signal can be calibrated as a function of different parameters such as laser pulse energy, gas vapor concentration and detection distance. The results yield good agreements with theoretical model. Techniques to obtain even longer detection distance and achieve outdoor operations are in the process of implementation and their projection is discussed.

© 2011 OSA

OCIS Codes
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors
(110.5125) Imaging systems : Photoacoustics
(140.5965) Lasers and laser optics : Semiconductor lasers, quantum cascade

ToC Category:
Remote Sensing

Original Manuscript: August 3, 2011
Revised Manuscript: September 9, 2011
Manuscript Accepted: September 20, 2011
Published: September 30, 2011

Xing Chen, Liwei Cheng, Dingkai Guo, Yordan Kostov, and Fow-Sen Choa, "Quantum cascade laser based standoff photoacoustic chemical detection," Opt. Express 19, 20251-20257 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. G. Bell, “On the production and reproduction of sound by light,” Am. J. Sci. 20, 305–324 (1880).
  2. A. Rosencwaig, Photoacoustics and Photoacoustic Spectroscopy (Wiley, New York 1980)
  3. Y. H. Pao, Optoacoustic Spectroscopy and Detection (Academic, New York, 1977)
  4. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994). [CrossRef] [PubMed]
  5. G. Wysocki, R. F. Curl, F. K. Tittel, R. Maulini, J. M. Bulliard, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications,” Appl. Phys. B 81(6), 769–777 (2005). [CrossRef]
  6. F. K. Tittel, Y. A. Bakhirkin, A. A. Kosterev, and G. Wysocki, “Recent advances in trace gas detection using quantum and interband cascade lasers,” Rev. Laser Eng. 34, 275–284 (2006).
  7. A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B 90(2), 165–176 (2008). [CrossRef]
  8. A. Elia, C. D. Franco, V. Spagnolo, P. M. Lugarà, and G. Scamarcio, “Quantum cascade laser-based photoacoustic sensor for trace detection of formaldehyde gas,” Sensors (Basel Switzerland) 9(4), 2697–2705 (2009). [CrossRef]
  9. E. Holthoff, J. Bender, P. Pellegrino, and A. Fisher, “Quantum cascade laser-based photoacoustic spectroscopy for trace vapor detection and molecular discrimination,” Sensors (Basel Switzerland) 10(3), 1986–2002 (2010). [CrossRef]
  10. D. J. Brassington, “Photo-acoustic detection and ranging - a new technique for the remote detection of gases,” J. Phys. D Appl. Phys. 15(2), 219–228 (1982). [CrossRef]
  11. S. H. Yönak and D. R. Dowling, “Photoacoustic detection and localization of small gas leaks,” J. Acoust. Soc. Am. 105(5), 2685–2694 (1999). [CrossRef] [PubMed]
  12. M. Harris, G. N. Pearson, D. V. Willetts, K. Ridley, P. R. Tapster, and B. Perrett, “Pulsed indirect photoacoustic spectroscopy: application to remote detection of condensed phases,” Appl. Opt. 39(6), 1032–1041 (2000). [CrossRef] [PubMed]
  13. B. Perrett, M. Harris, G. N. Pearson, D. V. Willetts, and M. C. Pitter, “Remote photoacoustic detection of liquid contamination of a surface,” Appl. Opt. 42(24), 4901–4908 (2003). [CrossRef] [PubMed]
  14. C. W. Van Neste, L. R. Senesac, and T. Thundat, “Standoff photoacoustic spectroscopy,” Appl. Phys. Lett. 92(23), 234102 (2008). [CrossRef]
  15. C.-C. Wang, S. Trivedi, F. Jin, V. Swaminathan, P. Rodriguez, and N. S. Prasad, “High sensitivity pulsed laser vibrometer and its application as a laser microphone,” Appl. Phys. Lett. 94(5), 051112 (2009). [CrossRef]
  16. A. Graninger, X. Chen, and F.-S. Choa, “Stand-off chemical detection using acoustic beam forming and photoacoustic sensing” presented at International Congress on Sound and Vibration 16, Kraków, Poland, July 2009.
  17. C. K. N. Patel and A. C. Tam, “Pulsed optoacoustic spectroscopy of condensed matter,” Rev. Mod. Phys. 53(3), 517–550 (1981). [CrossRef]
  18. A. C. Tam, “Applications of photoacoustic sensing technique,” Rev. Mod. Phys. 58(2), 381–431 (1986). [CrossRef]
  19. M. W. Sigrist, “Laser generation of acoustic waves in liquids and gases,” J. Appl. Phys. 60(7), R83–R122 (1986). [CrossRef]
  20. J. R. Cannon, “One-dimensional heat equation” in Encyclopedia of Mathematics and Its Applications (Addison-Wesley, Menlo Park, CA, 1984).
  21. A. Pierce, Acoustics (ASA, AIP, New York, 1989).
  22. N. A. Lange and J. A. Dean, Lange's Handbook of Chemistry, 10th ed. (McGraw-Hill, New York, 1967).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited