OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 21 — Oct. 10, 2011
  • pp: 20301–20315

Diffuse optical monitoring of repeated cerebral ischemia in mice

Yu Shang, Lei Chen, Michal Toborek, and Guoqiang Yu  »View Author Affiliations

Optics Express, Vol. 19, Issue 21, pp. 20301-20315 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1324 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Occlusions of bilateral common carotid arteries (bi-CCA) in mice are popular models for the investigation of transient forebrain ischemia. Currently available technologies for assessing cerebral blood flow (CBF) and oxygenation in ischemic mice have limitations. This study tests a novel near-infrared diffuse correlation spectroscopy (DCS) flow-oximeter for monitoring both CBF and cerebral oxygenation in mice undergoing repeated transient forebrain ischemia. Concurrent flow measurements in a mouse brain were first conducted for validation purposes; DCS measurement was found highly correlated with laser Doppler measurement (R2 = 0.94) and less susceptible to motion artifacts. With unique designs in experimental protocols and fiber-optic probes, we have demonstrated high sensitivities of DCS flow-oximeter in detecting the regional heterogeneity of CBF responses in different hemispheres and global changes of both CBF and cerebral oxygenation across two hemispheres in mice undergoing repeated 2-minute bi-CCA occlusions over 5 days. More than 75% CBF reductions were found during bi-CCA occlusions in mice, which may be considered as a threshold to determine a successful bi-CCA occlusion. With the progress of repeated 2-minute bi-CCA occlusions over days, a longitudinal decline in the magnitudes of CBF reduction was observed, indicating the brain adaptation to cerebral ischemia through the repeated preconditioning.

© 2011 OSA

OCIS Codes
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.6480) Medical optics and biotechnology : Spectroscopy, speckle

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: August 2, 2011
Revised Manuscript: September 9, 2011
Manuscript Accepted: September 9, 2011
Published: September 30, 2011

Virtual Issues
Vol. 6, Iss. 11 Virtual Journal for Biomedical Optics

Yu Shang, Lei Chen, Michal Toborek, and Guoqiang Yu, "Diffuse optical monitoring of repeated cerebral ischemia in mice," Opt. Express 19, 20301-20315 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Pignataro, A. Scorziello, G. Di Renzo, and L. Annunziato, “Post-ischemic brain damage: effect of ischemic preconditioning and postconditioning and identification of potential candidates for stroke therapy,” FEBS J. 276(1), 46–57 (2009). [CrossRef] [PubMed]
  2. T. Kirino, “Ischemic tolerance,” J. Cereb. Blood Flow Metab. 22(11), 1283–1296 (2002). [CrossRef] [PubMed]
  3. A. Durukan, D. Strbian, and T. Tatlisumak, “Rodent models of ischemic stroke: a useful tool for stroke drug development,” Curr. Pharm. Des. 14(4), 359–370 (2008). [CrossRef] [PubMed]
  4. B. Schaller and R. Graf, “Cerebral ischemic preconditioning,” J. Neurol. 249(11), 1503–1511 (2002). [CrossRef] [PubMed]
  5. N. E. Stagliano, M. A. Pérez-Pinzón, M. A. Moskowitz, and P. L. Huang, “Focal ischemic preconditioning induces rapid tolerance to middle cerebral artery occlusion in mice,” J. Cereb. Blood Flow Metab. 19(7), 757–761 (1999). [CrossRef] [PubMed]
  6. J. M. Gidday, “Cerebral preconditioning and ischaemic tolerance,” Nat. Rev. Neurosci. 7(6), 437–448 (2006). [CrossRef] [PubMed]
  7. R. R. Ratan, A. Siddiq, L. Aminova, P. S. Lange, B. Langley, I. Ayoub, J. A. Gensert, and J. Chavez, “Translation of ischemic preconditioning to the patient - Prolyl hydroxylase inhibition and hypoxia inducible factor-1 as novel targets for stroke therapy,” Stroke 35(11,Suppl. 1), 2687–2689 (2004). [CrossRef] [PubMed]
  8. K. Kitagawa, M. Matsumoto, G. M. Yang, T. Mabuchi, Y. Yagita, M. Hori, and T. Yanagihara, “Cerebral ischemia after bilateral carotid artery occlusion and intraluminal suture occlusion in mice: Evaluation of the patency of the posterior communicating artery,” J. Cereb. Blood Flow Metab. 18(5), 570–579 (1998). [CrossRef] [PubMed]
  9. L. Chen, K. R. Swartz, and M. Toborek, “Vessel microport technique for applications in cerebrovascular research,” J. Neurosci. Res. 87(7), 1718–1727 (2009). [CrossRef] [PubMed]
  10. R. S. Marshall, T. Rundek, D. M. Sproule, B. F. M. Fitzsimmons, S. Schwartz, and R. M. Lazar, “Monitoring of cerebral vasodilatory capacity with transcranial Doppler carbon dioxide inhalation in patients with severe carotid artery disease,” Stroke 34(4), 945–949 (2003). [CrossRef] [PubMed]
  11. Y. Shang, R. Cheng, L. Dong, S. J. Ryan, S. P. Saha, and G. Yu, “Cerebral monitoring during carotid endarterectomy using near-infrared diffuse optical spectroscopies and electroencephalogram,” Phys. Med. Biol. 56(10), 3015–3032 (2011). [CrossRef] [PubMed]
  12. P. J. Goadsby and L. Edvinsson, Neurovascular control of the cerebral circulation, (Lippincott Williams & Wilkins, 2002).
  13. N. Khan, B. B. Williams, H. Hou, H. Li, and H. M. Swartz, “Repetitive tissue pO2 measurements by electron paramagnetic resonance oximetry: current status and future potential for experimental and clinical studies,” Antioxid. Redox Signal. 9(8), 1169–1182 (2007). [CrossRef] [PubMed]
  14. H. Piilgaard and M. Lauritzen, “Persistent increase in oxygen consumption and impaired neurovascular coupling after spreading depression in rat neocortex,” J. Cereb. Blood Flow Metab. 29(9), 1517–1527 (2009). [CrossRef] [PubMed]
  15. P. Riyamongkol, W. Z. Zhao, Y. T. Liu, L. Belayev, R. Busto, and M. D. Ginsberg, “Automated registration of laser Doppler perfusion images by an adaptive correlation approach: application to focal cerebral ischemia in the rat,” J. Neurosci. Methods 122(1), 79–90 (2002). [CrossRef] [PubMed]
  16. A. B. Parthasarathy, S. M. Kazmi, and A. K. Dunn, “Quantitative imaging of ischemic stroke through thinned skull in mice with Multi Exposure Speckle Imaging,” Biomed. Opt. Express 1(1), 246–259 (2010). [CrossRef] [PubMed]
  17. J. Luckl, W. Baker, Z. H. Sun, T. Durduran, A. G. Yodh, and J. H. Greenberg, “The biological effect of contralateral forepaw stimulation in rat focal cerebral ischemia: a multispectral optical imaging study,” Front. Neuroenergetics 2 (2010).
  18. L. F. Yu, E. Nguyen, G. J. Liu, B. Choi, and Z. P. Chen, “Spectral Doppler optical coherence tomography imaging of localized ischemic stroke in a mouse model,” J. Biomed. Opt. 15(6), 066006 (2010). [CrossRef] [PubMed]
  19. Y. L. Jia and R. K. K. Wang, “Optical micro-angiography images structural and functional cerebral blood perfusion in mice with cranium left intact,” J. Biophoton. 4(1-2), 57–63 (2011). [CrossRef] [PubMed]
  20. A. Van der Linden, N. Van Camp, P. Ramos-Cabrer, and M. Hoehn, “Current status of functional MRI on small animals: application to physiology, pathophysiology, and cognition,” NMR Biomed. 20(5), 522–545 (2007). [CrossRef] [PubMed]
  21. Y. Kuge, H. Kawashima, T. Hashimoto, M. Imanishi, M. Shiomi, K. Minematsu, Y. Hasegawa, T. Yamaguchi, Y. Miyake, and N. Hashimoto, “Preliminary evaluation of [1-11C]octanoate as a PET tracer for studying cerebral ischemia: a PET study in rat and canine models of focal cerebral ischemia,” Ann. Nucl. Med. 14(1), 69–74 (2000). [CrossRef] [PubMed]
  22. S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol. 44(6), 1543–1563 (1999). [CrossRef] [PubMed]
  23. F. H. Tian, B. Chance, and H. L. Liu, “Investigation of the prefrontal cortex in response to duration-variable anagram tasks using functional near-infrared spectroscopy,” J. Biomed. Opt. 14(5), 054016 (2009). [CrossRef] [PubMed]
  24. M. A. Franceschini, D. K. Joseph, T. J. Huppert, S. G. Diamond, and D. A. Boas, “Diffuse optical imaging of the whole head,” J. Biomed. Opt. 11(5), 054007 (2006). [CrossRef] [PubMed]
  25. G. Strangman, M. A. Franceschini, and D. A. Boas, “Factors affecting the accuracy of near-infrared spectroscopy concentration calculations for focal changes in oxygenation parameters,” Neuroimage 18(4), 865–879 (2003). [CrossRef] [PubMed]
  26. T. Durduran, “Non-Invasive Measurements of Tissue Hemodynamics with Hybrid Diffuse Optical Methods,” Degree of Doctor of Philosophy (University of Pennsylvania, 2004).
  27. X. Intes, C. Maloux, M. Guven, B. Yazici, and B. Chance, “Diffuse optical tomography with physiological and spatial a priori constraints,” Phys. Med. Biol. 49(12), N155–N163 (2004). [CrossRef] [PubMed]
  28. J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,” J. Cereb. Blood Flow Metab. 23(8), 911–924 (2003). [CrossRef] [PubMed]
  29. J. Li, M. Ninck, L. Koban, T. Elbert, J. Kissler, and T. Gisler, “Transient functional blood flow change in the human brain measured noninvasively by diffusing-wave spectroscopy,” Opt. Lett. 33(19), 2233–2235 (2008). [CrossRef] [PubMed]
  30. L. Gagnon, M. Desjardins, J. Jehanne-Lacasse, L. Bherer, and F. Lesage, “Investigation of diffuse correlation spectroscopy in multi-layered media including the human head,” Opt. Express 16(20), 15514–15530 (2008). [CrossRef] [PubMed]
  31. T. Durduran, G. Yu, M. G. Burnett, J. A. Detre, J. H. Greenberg, J. J. Wang, C. Zhou, and A. G. Yodh, “Diffuse optical measurement of blood flow, blood oxygenation, and metabolism in a human brain during sensorimotor cortex activation,” Opt. Lett. 29(15), 1766–1768 (2004). [CrossRef] [PubMed]
  32. G. Yu, T. F. Floyd, T. Durduran, C. Zhou, J. J. Wang, J. A. Detre, and A. G. Yodh, “Validation of diffuse correlation spectroscopy for muscle blood flow with concurrent arterial spin labeled perfusion MRI,” Opt. Express 15(3), 1064–1075 (2007). [CrossRef] [PubMed]
  33. D. A. Boas, L. E. Campbell, and A. G. Yodh, “Scattering and Imaging with Diffusing Temporal Field Correlations,” Phys. Rev. Lett. 75(9), 1855–1858 (1995). [CrossRef] [PubMed]
  34. G. Yu, T. Durduran, C. Zhou, H. W. Wang, M. E. Putt, H. M. Saunders, C. M. Sehgal, E. Glatstein, A. G. Yodh, and T. M. Busch, “Noninvasive monitoring of murine tumor blood flow during and after photodynamic therapy provides early assessment of therapeutic efficacy,” Clin. Cancer Res. 11(9), 3543–3552 (2005). [CrossRef] [PubMed]
  35. R. C. Mesquita, N. Skuli, M. N. Kim, J. Liang, S. Schenkel, A. J. Majmundar, M. C. Simon, and A. G. Yodh, “Hemodynamic and metabolic diffuse optical monitoring in a mouse model of hindlimb ischemia,” Biomed. Opt. Express 1(4), 1173–1187 (2010). [CrossRef] [PubMed]
  36. M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive Measurement of Cerebral Blood Flow and Blood Oxygenation Using Near-Infrared and Diffuse Correlation Spectroscopies in Critically Brain-Injured Adults,” Neurocrit. Care 12(2), 173–180 (2010). [CrossRef] [PubMed]
  37. E. M. Buckley, N. M. Cook, T. Durduran, M. N. Kim, C. Zhou, R. Choe, G. Yu, S. Schultz, C. M. Sehgal, D. J. Licht, P. H. Arger, M. E. Putt, H. H. Hurt, and A. G. Yodh, “Cerebral hemodynamics in preterm infants during positional intervention measured with diffuse correlation spectroscopy and transcranial Doppler ultrasound,” Opt. Express 17(15), 12571–12581 (2009). [CrossRef] [PubMed]
  38. C. Zhou, S. A. Eucker, T. Durduran, G. Yu, J. Ralston, S. H. Friess, R. N. Ichord, S. S. Margulies, and A. G. Yodh, “Diffuse optical monitoring of hemodynamic changes in piglet brain with closed head injury,” J. Biomed. Opt. 14(3), 034015 (2009). [CrossRef] [PubMed]
  39. U. Sunar, H. Quon, T. Durduran, J. Zhang, J. Du, C. Zhou, G. Yu, R. Choe, A. Kilger, R. Lustig, L. Loevner, S. Nioka, B. Chance, and A. G. Yodh, “Noninvasive diffuse optical measurement of blood flow and blood oxygenation for monitoring radiation therapy in patients with head and neck tumors: a pilot study,” J. Biomed. Opt. 11(6), 064021 (2006). [CrossRef] [PubMed]
  40. Y. Shang, Y. Zhao, R. Cheng, L. Dong, D. Irwin, and G. Yu, “Portable optical tissue flow oximeter based on diffuse correlation spectroscopy,” Opt. Lett. 34(22), 3556–3558 (2009). [CrossRef] [PubMed]
  41. G. Yu, Y. Shang, Y. Zhao, R. Cheng, L. Dong, and S. P. Saha, “Intraoperative evaluation of revascularization effect on ischemic muscle hemodynamics using near-infrared diffuse optical spectroscopies,” J. Biomed. Opt. 16(2), 027004 (2011). [CrossRef] [PubMed]
  42. C. Cheung, J. P. Culver, K. Takahashi, J. H. Greenberg, and A. G. Yodh, “In vivo cerebrovascular measurement combining diffuse near-infrared absorption and correlation spectroscopies,” Phys. Med. Biol. 46(8), 2053–2065 (2001). [CrossRef] [PubMed]
  43. A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, L. Tyszczuk, M. Cope, and D. T. Delpy, “Optical pathlength measurements on adult head, calf and forearm and the head of the newborn infant using phase resolved optical spectroscopy,” Phys. Med. Biol. 40(2), 295–304 (1995). [CrossRef] [PubMed]
  44. Y. Shang, T. B. Symons, T. Durduran, A. G. Yodh, and G. Yu, “Effects of muscle fiber motion on diffuse correlation spectroscopy blood flow measurements during exercise,” Biomed. Opt. Express 1(2), 500–511 (2010). [CrossRef] [PubMed]
  45. B. Chance, M. T. Dait, C. D. Zhang, T. Hamaoka, and F. Hagerman, “Recovery from Exercise-Induced Desaturation in the Quadriceps Muscles of Elite Competitive Rowers,” Am. J. Physiol. 262(3 Pt 1), C766–C775 (1992). [PubMed]
  46. H. W. Wang, M. E. Putt, M. J. Emanuele, D. B. Shin, E. Glatstein, A. G. Yodh, and T. M. Busch, “Treatment-induced changes in tumor oxygenation predict photodynamic therapy outcome,” Cancer Res. 64(20), 7553–7561 (2004). [CrossRef] [PubMed]
  47. M. J. Leahy, F. F. de Mul, G. E. Nilsson, and R. Maniewski, “Principles and practice of the laser-Doppler perfusion technique,” Technol. Health Care 7(2-3), 143–162 (1999). [PubMed]
  48. K. Kidoguchi, M. Tamaki, T. Mizobe, J. Koyama, T. Kondoh, E. Kohmura, T. Sakurai, K. Yokono, and K. Umetani, “In vivo X-ray angiography in the mouse brain using synchrotron radiation,” Stroke 37(7), 1856–1861 (2006). [CrossRef] [PubMed]
  49. D. Irwin, L. Dong, Y. Shang, R. Cheng, M. Kudrimoti, S. D. Stevens, and G. Yu, “Influences of tissue absorption and scattering on diffuse correlation spectroscopy blood flow measurements,” Biomed. Opt. Express 2(7), 1969–1985 (2011). [CrossRef] [PubMed]
  50. J. Hendrikse, M. J. Hartkamp, B. Hillen, W. P. T. M. Mali, and J. van der Grond, “Collateral ability of the circle of Willis in patients with unilateral internal carotid artery occlusion: Border zone infarcts and clinical symptoms,” Stroke 32(12), 2768–2773 (2001). [CrossRef] [PubMed]
  51. L. F. Liu, C. K. Yeh, C. H. Chen, T. W. Wong, and J. J. J. Chen, “Measurement of Cerebral Blood Flow and Oxygen Saturation Using Laser Doppler Flowmetry and Near Infrared Spectroscopy in Ischemic Stroke Rats,” Med. Biol. Eng. 28, 101–105 (2008).
  52. P. T. Ulrich, S. Kroppenstedt, A. Heimann, O. Kempski, and B. G. Lyeth, “Laser-Doppler scanning of local cerebral blood flow and reserve capacity and testing of motor and memory functions in a chronic 2-vessel occlusion model in rats,” Stroke 29(11), 2412–2420 (1998). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited