OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 21 — Oct. 10, 2011
  • pp: 20332–20346

Passive all-optical polarization switch, binary logic gates, and digital processor

Y. A. Zaghloul, A. R. M. Zaghloul, and A. Adibi  »View Author Affiliations

Optics Express, Vol. 19, Issue 21, pp. 20332-20346 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1141 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We introduce the passive all-optical polarization switch, which modulates light with light. That switch is used to construct all the binary logic gates of two or more inputs. We discuss the design concepts and the operation of the AND, OR, NAND, and NOR gates as examples. The rest of the 16 logic gates are similarly designed. Cascading of such gates is straightforward as we show and discuss. Cascading in itself does not require a power source, but feedback at this stage of development does. The design and operation of an SR Latch is presented as one of the popular basic sequential devices used for memory cells. That completes the essential components of an all-optical polarization digital processor. The speed of such devices is well above 10 GHz for bulk implementations and is much higher for chip-size implementations. In addition, the presented devices do have the four essential characteristics previously thought unique to the microelectronic ones.

© 2011 OSA

OCIS Codes
(200.3050) Optics in computing : Information processing
(200.4660) Optics in computing : Optical logic
(230.1150) Optical devices : All-optical devices
(320.7080) Ultrafast optics : Ultrafast devices
(200.6715) Optics in computing : Switching
(320.7085) Ultrafast optics : Ultrafast information processing
(230.3750) Optical devices : Optical logic devices

ToC Category:
Optics in Computing

Original Manuscript: June 24, 2011
Revised Manuscript: August 1, 2011
Manuscript Accepted: August 13, 2011
Published: October 3, 2011

Y. A. Zaghloul, A. R. M. Zaghloul, and A. Adibi, "Passive all-optical polarization switch, binary logic gates, and digital processor," Opt. Express 19, 20332-20346 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. J. Caulfield and S. Dolev, “Why future supercomputing requires optics,” Nat. Photonics 4(5), 261–263 (2010). [CrossRef]
  2. R. S. Tucker, “The role of optics in computing,” Nat. Photonics 4(7), 405 (2010). [CrossRef]
  3. D. A. B. Miller, “Are optical transistors the logical next step,” Nat. Photonics 4(1), 3–5 (2010). [CrossRef]
  4. D. A. B. Miller, “Device requirements for digital optical processing,” SPIE Critical Reviews of Optical Science and Technology CR35, 67–76 (1990).
  5. J. Hwang, M. Pototschnig, R. Lettow, G. Zumofen, A. Renn, S. Götzinger, and V. Sandoghdar, “A single-molecule optical transistor,” Nature 460(7251), 76–80 (2009). [CrossRef] [PubMed]
  6. F. Xiong, A. D. Liao, D. Estrada, and E. Pop, “Low-power switching of phase-change materials with carbon nanotube electrodes,” Science 332(6029), 568–570 (2011). [CrossRef] [PubMed]
  7. L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Throurhout, R. Baets, and G. Morthier, “An Ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4(3), 182–187 (2010). [CrossRef]
  8. P. W. Smith, “Hybrid bistable optical devices,” Opt. Eng. 19, 456–462 (1980).
  9. M. T. Fatehi, K. C. Wasmundt, and S. A. Collins., “Optical logic gates using liquid crystal light valve: implementation and application example,” Appl. Opt. 20(13), 2250–2256 (1981). [CrossRef] [PubMed]
  10. V. I. Vlad, “Opto-electronic bistable devices for image processing,” Opt. Acta (Lond.) 32, 1235–1250 (1985).
  11. A. W. Lohmann, “Polarization and optical logic,” Appl. Opt. 25(10), 1594–1597 (1986). [CrossRef] [PubMed]
  12. A. W. Lohmann and J. Weigelt, “Spatial filtering logic based on polarization,” Appl. Opt. 26(1), 131–135 (1987). [CrossRef] [PubMed]
  13. M. A. Handschy, K. M. Johnson, W. T. Cathey, and L. A. Pagano-Stauffer, “Polarization-based optical parallel logic gate utilizing ferroelectric liquid crystals,” Opt. Lett. 12(8), 611–613 (1987). [CrossRef] [PubMed]
  14. M. A. Karim, A. A. S. Awwal, and A. K. Cherri, “Polarization-encoded optical shadow-casting logic units: design,” Appl. Opt. 26(14), 2720–2725 (1987). [CrossRef] [PubMed]
  15. M. S. Alam and M. A. Karim, “Multiple-valued logic based multiprocessor using polarization-encoded optical shadow-casting,” Opt. Commun. 96(1-3), 164–173 (1993). [CrossRef]
  16. G. R. Kumar, B. P. Singh, K. D. Rao, and K. K. Sharma, “Polarization-based optical logic using laser-excited gratings,” Opt. Lett. 15(4), 245–247 (1990). [CrossRef] [PubMed]
  17. M. A. Habli and K. Leonik, “Polarization-coded optical logic gates for N-inputs,” Optik (Stuttg.) 91, 100–102 (1992).
  18. W. Wu, S. Campbell, S. Zhou, and P. Yeh, “Polarization-encoded optical logic operations in photorefractive media,” Opt. Lett. 18(20), 1742–1744 (1993). [CrossRef] [PubMed]
  19. F. Yu and G. Zheng, “An improved polarization-encoded logic algebra (PLA) used for the design of an optical logic gate for a 2D data array: theory,” Opt. Commun. 115(5-6), 585–596 (1995). [CrossRef]
  20. M. M. Mano and C. R. Kime, Logic and Computer Design Fundamentals, 2nd Ed. (Prentice Hall, 2001).
  21. H. Peng, L. Liu, Y. Yin, and Z. Wang, “Integrated polarization-optical logic processor,” Opt. Commun. 112(3-4), 131–135 (1994). [CrossRef]
  22. R. Torroba, R. Henao, and C. Carletti, “Digital polarization-encoding technique for optical logic operations,” Opt. Lett. 21(23), 1918–1920 (1996). [CrossRef] [PubMed]
  23. R. Torroba, R. Henao, and C. Carletti, “Polarization encoded architecture for optical logic operations,” Optik (Stuttg.) 107, 41–43 (1997).
  24. N. Nishimura, Y. Awatsuji, and T. Kubota, “Analysis and evaluations of logical instructions called in parallel digital optical operations based on optical array logic,” Appl. Opt. 42(14), 2532–2545 (2003). [CrossRef] [PubMed]
  25. J. Hardy and J. Shamir, “Optics inspired logic architecture,” Opt. Express 15(1), 150–165 (2007). [CrossRef] [PubMed]
  26. Y. Miyoshi, K. Ikeda, H. Tobioka, T. Inoue, S. Namiki, and K.- Kitayama, “Ultrafast all-optical logic gate using a nonlinear optical loop mirror based multi-periodic transfer function,” Opt. Express 16(4), 2570–2577 (2008). [CrossRef]
  27. Y. A. Zaghloul and A. R. M. Zaghloul, “Unforced polarization-based optical implementation of Binary logic,” Opt. Express 14(16), 7252–7269 (2006). [CrossRef] [PubMed]
  28. Y. A. Zaghloul and A. R. M. Zaghloul, “Complete all-optical processing polarization-based binary logic gates and optical processors,” Opt. Express 14(21), 9879–9895 (2006). [CrossRef] [PubMed]
  29. W. A. Shurcliff, Polarized Light (Harvard, 1962).
  30. F. L. Pedrotti, L. S. Pedrotti, and L. M. Pedrotti, Introduction to Optics, 3rd Ed. (Prentice Hall, 2007).
  31. E. Hecht, Optics, 4th Ed. (Addison Wesley, 2002).
  32. R. Clark Jones, “A new calculus for the treatment of optical systems I. Description and discussion of the calculus,” J. Opt. Soc. Am. 31, 488–493 (1941).
  33. A. Kumar and A. Ghatak, Polarization of Ligt and Applications in Optical Fibers (SPIE, 2011).
  34. E. Collette, Field Guide to Polarization (SPIE, 2005).
  35. O. Solgaard, “Miniaturization of free space optical systems,” Appl. Opt. 49(25), F18–F31 (2010). [CrossRef] [PubMed]
  36. General Photonics Corporation, 5228 Edison Ave, Chino, CA 91710, USA. ( www.generalphotonics.com ).
  37. Infinera, 169 Java Drive, Sunnyvale, CA 94089, USA. ( www.infinera.com ).
  38. IMEC, Kapeldreef 75, B-3001 Leuven, Belgium. ( www2.imec.be ).
  39. J. Zhang, M. Yu, G.-Q. Lo, and D.-L Kwong, “Silicon-waveguide-based mode evolution polarization rotator,” IEEE J. Sel. Top. Quantum Electron. 16, 53–60 (2010).
  40. T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007). [CrossRef]
  41. T. Barwicz, M. A. Popovic, M. R. Watts, P. T. Rakich, E. P. Ippen, and H. I. Smith, “Fabrication of add-drop filters based on frequency-matched microring resonators,” IEEE J. Lightwave Technol. 24(5), 2207–2218 (2006). [CrossRef]
  42. D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s-1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nature Photon. 5, 364-371 (2011).
  43. A. R. M. Zaghloul, D. A. Keeling, W. A. Berzett, and J. S. Mason, “Design of reflection retarders by use of nonnegative film-substrate systems,” J. Opt. Soc. Am. A 22(8), 1637–1645 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (4017 KB)     
» Media 2: MOV (2547 KB)     
» Media 3: MOV (4206 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited