OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 21 — Oct. 10, 2011
  • pp: 20372–20385

Competing coupled gaps and slabs for plasmonic metamaterial analysis

Gilad Rosenblatt and Meir Orenstein  »View Author Affiliations

Optics Express, Vol. 19, Issue 21, pp. 20372-20385 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1406 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Layered medium comprised of metal-dielectrics constituents is of much interest in the field of metamaterials. Here we introduce a novel analysis approach based on competing coupled structures of plasmonic gaps (MIM) and slabs (IMI) for the detailed comprehension of the band structure of periodic metal-dielectric stacks. This approach enables the rigorous identification of many interesting features including the intersections between plasmonic bands, flat or negative band formation, and the field symmetry of the propagating modes. Furthermore – the “gap-slab competition” concept allows us to develop design tools for incorporating desired dispersion properties of both gap and slab modes into the stack’s band structure, as well as effects of finite stack termination.

© 2011 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(350.4238) Other areas of optics : Nanophotonics and photonic crystals

ToC Category:

Original Manuscript: July 1, 2011
Manuscript Accepted: September 17, 2011
Published: October 3, 2011

Gilad Rosenblatt and Meir Orenstein, "Competing coupled gaps and slabs for plasmonic metamaterial analysis," Opt. Express 19, 20372-20385 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. A. Macleod, Thin-Film Optical Filters, Institute of Physics Publishing (2001).
  2. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism From Conductors and Enhanced Nonlinear Phenomena,” IEEE Trans. Microw. Theory Tech.47(11), 2075–2084 (1999). [CrossRef]
  3. S. A. Ramakrishna, “Physics of Negative Refractive Index Materials,” Rep. Prog. Phys.68, 3966–3969 (2000).
  4. S. Feng and J. M. Elson, “Diffraction-suppressed high-resolution imaging through metallodielectric nanofilms,” Opt. Express14(1), 216–221 (2006). [CrossRef] [PubMed]
  5. F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-range surface modes supported by thin films,” Phys. Rev. B44(11), 5855–5872 (1991). [CrossRef]
  6. V. Kuzmiak, A. A. Maradudin, and F. Pincemin, “Photonic band structures of two-dimensional systems containing metallic components,” Phys. Rev. B Condens. Matter50(23), 16835–16844 (1994). [CrossRef] [PubMed]
  7. M. M. Sigalas, C. T. Chan, K. M. Ho, and C. M. Soukoulis, “Metallic photonic band-gap materials,” Phys. Rev. B Condens. Matter52(16), 11744–11751 (1995). [CrossRef] [PubMed]
  8. S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Large omnidirectional band gaps in metallodielectric photonic crystals,” Phys. Rev. B Condens. Matter54(16), 11245–11251 (1996). [CrossRef] [PubMed]
  9. M. Scalora, M. J. Bloemer, A. S. Pethel, J. P. Dowling, C. M. Bowden, and A. S. Manka, “Transparent, Metallo-Dielectric, One-Dimensional, Photonic Band-Gap Structures,” J. Appl. Phys.83(5), 2377–2383 (1998). [CrossRef]
  10. S. Feng, J. M. Elson, and P. Overfelt, “Optical properties of multilayer metal-dielectric nanofilms with all-evanescent modes,” Opt. Express13(11), 4113–4124 (2005). [CrossRef] [PubMed]
  11. S. Feng, J. M. Elson, and P. Overfelt, “Transparent Photonic Band in Metallodielectric Nanostructures,” Phys. Rev. B72(8), 085117 (2005). [CrossRef]
  12. M. Scalora, M. J. Bloemer, A. S. Pethel, J. P. Dowling, C. M. Bowden, and A. S. Manka, “Transparent, metallo-dielectric, one-dimensional, photonic band-gap structures,” J. Appl. Phys.83(5), 2377 (1998). [CrossRef]
  13. M. Sarajlic, Z. Jaksic, O. Jaksic, M Maksimovic, and D. Jovanovic, “Dispersion of Propagating and Evanescent Modes in 1D Metallodielectric Photonic Crystal,” 14th Telecommunications Forum TELFOR (2006).
  14. J. Zhang, H. Jiang, S. Enoch, G. Tayeb, B. Gralak, and M. Lequime, “Two-Dimensional Complete Band Gaps in One-Dimensional Metlo-Dielectric Periodic Structures,” Appl. Phys. Lett.92(5), 053104 (2008). [CrossRef]
  15. T. Pertsch, T. Zentgraf, U. Peschel, A. Bräuer, and F. Lederer, “Anomalous refraction and diffraction in discrete optical systems,” Phys. Rev. Lett.88(9), 093901 (2002). [CrossRef] [PubMed]
  16. H. S. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison, “Diffraction management,” Phys. Rev. Lett.85(9), 1863–1866 (2000). [CrossRef] [PubMed]
  17. G. Rosenblatt, E. Feigenbaum, and M. Orenstein, “Circular motion of electromagnetic power shaping the dispersion of Surface Plasmon Polaritons,” Opt. Express18(25), 25861–25872 (2010). [CrossRef] [PubMed]
  18. E. Anemogiannis, E. N. Glytsis, and T. K. Gaylord, “Determination of guided and leaky modes in lossless and lossy planar multilayer optical waveguides: reflection pole method and wavevector density method,” J Lightwave Technol.17(5), 929-941 (1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited