OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 21 — Oct. 10, 2011
  • pp: 20389–20394

Lasing characteristics of an optically pumped single ZnO nanosheet

Kota Okazaki, Daisuke Nakamura, Mitsuhiro Higashihata, Palani Iyamperumal, and Tatsuo Okada  »View Author Affiliations

Optics Express, Vol. 19, Issue 21, pp. 20389-20394 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (2338 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the lasing characteristics of a single ZnO nanosheet optically pumped by ultraviolet laser beam. The ZnO nanosheets were synthesized by a carbothermal chemical vapor deposition method. The ZnO nanosheets dispersed on a silica glass substrate were excited by the third-harmonic of a Q-switched Nd:YAG laser (λ = 355 nm, τ = 5 ns) and photoluminescence from a single ZnO nanosheet was observed. The observed emission spectra showed the obvious lasing characteristics having modal structure and threshold characteristics. The threshold power for lasing was measured to be 50 kW/cm2, which was much lower than 150 kW/cm2, the threshold power of the reference ZnO nanowire. It indicates that the ZnO nanosheet is a superior gain medium for an ultraviolet laser. The oscillation mechanism inside a ZnO nanosheet is attributed to the micro-cavity effect, based on the three-dimensional laser-field simulation.

© 2011 OSA

OCIS Codes
(140.3610) Lasers and laser optics : Lasers, ultraviolet
(140.5960) Lasers and laser optics : Semiconductor lasers
(160.6000) Materials : Semiconductor materials
(300.6540) Spectroscopy : Spectroscopy, ultraviolet
(160.4236) Materials : Nanomaterials

ToC Category:
Lasers and Laser Optics

Original Manuscript: July 6, 2011
Revised Manuscript: September 21, 2011
Manuscript Accepted: September 21, 2011
Published: October 3, 2011

Kota Okazaki, Daisuke Nakamura, Mitsuhiro Higashihata, Palani Iyamperumal, and Tatsuo Okada, "Lasing characteristics of an optically pumped single ZnO nanosheet," Opt. Express 19, 20389-20394 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Q. Guo, J. Nishimura, M. Matsumoto, D. Nakamura, and T. Okada, “Catalyst-free synthesis of vertically-aligned ZnO nanowires by nanoparticle-assisted pulsed laser deposition,” Appl. Phys., A Mater. Sci. Process. 93(4), 843–847 (2008). [CrossRef]
  2. R. Q. Guo, M. Matsumoto, T. Matsumoto, M. Higashihata, D. Nakamura, and T. Okada, “Aligned growth of ZnO nanowires by NAPLD and their optical characterizations,” Appl. Surf. Sci. 255(24), 9671–9675 (2009). [CrossRef]
  3. J. H. Park and J. G. Park, “Synthesis of ultrawide ZnO nanosheets,” Curr. Appl. Phys. 6(6), 1020–1023 (2006). [CrossRef]
  4. L. Xu, Y. Guo, Q. Liao, J. Zhang, and D. Xu, “Morphological control of ZnO nanostructures by electrodeposition,” J. Phys. Chem. B 109(28), 13519–13522 (2005). [CrossRef] [PubMed]
  5. F. Wang, R. Liu, A. Pan, L. Cao, K. Cheng, B. Xue, G. Wang, Q. Meng, J. Li, Q. Li, Y. Wang, T. Wang, and B. Zou, “The optical properties of ZnO sheets electrodeposited on ITO glass,” Mater. Lett. 61(10), 2000–2003 (2007). [CrossRef]
  6. E. S. Jang, X. Chen, J. H. Won, J. H. Chung, D. J. Jang, Y. W. Kim, and J. H. Choy, “Soft-solution route to ZnO nanowall array with low threshold power density,” Appl. Phys. Lett. 97(4), 043109 (2010). [CrossRef]
  7. E. S. P. Leong, S. F. Yu, and S. P. Lau, “Directional edge-emitting UV random laser diodes,” Appl. Phys. Lett. 89(22), 221109 (2006). [CrossRef]
  8. S. Chu, M. Olmedo, Z. Yang, J. Kong, and J. Liu, “Electrically pumped ultraviolet ZnO diode lasers on Si,” Appl. Phys. Lett. 93(18), 181106 (2008). [CrossRef]
  9. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001). [CrossRef] [PubMed]
  10. L. K. van Vugt, S. Rühle, and D. Vanmaekelbergh, “Phase-correlated nondirectional laser emission from the end facets of a ZnO nanowire,” Nano Lett. 6(12), 2707–2711 (2006). [CrossRef] [PubMed]
  11. M. A. Zimmler, F. Capasso, S. Muller, and C. Ronning, “Optically pumped nanowire lasers: invited review,” Semicond. Sci. Technol. 25(2), 024001 (2010). [CrossRef]
  12. G. P. Zhu, C. X. Xu, J. Zhu, C. G. Lv, and Y. P. Cui, “Two-photon excited whispering-gallery mode ultraviolet laser from an individual ZnO microneedle,” Appl. Phys. Lett. 94(5), 051106 (2009). [CrossRef]
  13. C. Czekalla, T. Nobis, A. Rahm, B. Cao, J. Zúñiga-Pérez, C. Sturm, R. Schmidt-Grund, M. Lorenz, and M. Grundmann, “Whispering gallery modes in zinc oxide micro- and nanowires,” Phys. Status Solidi B 247(6), 1282–1293 (2010). [CrossRef]
  14. S. F. Yu, C. Yuen, S. P. Lau, W. I. Park, and G.-C. Yi, “Random laser action in ZnO nanorod arrays embedded in ZnO epilayers,” Appl. Phys. Lett. 84(17), 3241–3243 (2004). [CrossRef]
  15. E. S. P. Leong and S. F. Yu, “UV random lasing action in p-SiC(4H)/i-ZnO–SiO2 nanocomposite/n-ZnO:Al heterojunction diodes,” Adv. Mater. (Deerfield Beach Fla.) 18(13), 1685–1688 (2006). [CrossRef]
  16. Y. T. Shih, C. Y. Chiu, C. W. Chang, J. R. Yang, M. Shiojiri, and M. J. Chen, “Stimulated emission in highly (0001)-oriented ZnO films grown by atomic layer deposition on the amorphous glass substrates,” J. Electrochem. Soc. 157(9), H879–H883 (2010). [CrossRef]
  17. J. C. Ryan and T. L. Reinecke, “Band-gap renormalization of optically excited semiconductor quantum wells,” Phys. Rev. B Condens. Matter 47(15), 9615–9620 (1993). [CrossRef] [PubMed]
  18. A. E. Siegman, Lasers (University Science Books, 1986).
  19. S. Adachi, Optical Constants of Crystalline and Amorphous Semiconductors: Numerical Data and Graphical Information (Kluwer Academic, 1999), Chap. D2.
  20. M. K. Barnovski, Fundamentals of Optical Fiber Communications (Academic, 1981).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited