OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 21 — Oct. 10, 2011
  • pp: 20444–20461

Femtosecond Cr:LiSAF and Cr:LiCAF lasers pumped by tapered diode lasers

Umit Demirbas, Michael Schmalz, Bernd Sumpf, Götz Erbert, Gale S. Petrich, Leslie A. Kolodziejski, James G. Fujimoto, Franz X. Kärtner, and Alfred Leitenstorfer  »View Author Affiliations


Optics Express, Vol. 19, Issue 21, pp. 20444-20461 (2011)
http://dx.doi.org/10.1364/OE.19.020444


View Full Text Article

Enhanced HTML    Acrobat PDF (1331 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report compact, low-cost and efficient Cr:Colquiriite lasers that are pumped by high brightness tapered laser diodes. The tapered laser diodes provided 1 to 1.2 W of output power around 675 nm, at an electrical-to-optical conversion efficiency of about 30%. Using a single tapered diode laser as the pump source, we have demonstrated output powers of 500 mW and 410 mW together with slope efficiencies of 47% and 41% from continuous wave (cw) Cr:LiSAF and Cr:LiCAF lasers, respectively. In cw mode-locked operation, sub-100-fs pulse trains with average power between 200 mW and 250 mW were obtained at repetition rates around 100 MHz. Upon pumping the Cr:Colquiriite lasers with two tapered laser diodes (one from each side of the crystal), we have observed scaling of cw powers to 850 mW in Cr:LiSAF and to 650 mW in Cr:LiCAF. From the double side pumped Cr:LiCAF laser, we have also obtained ~220 fs long pulses with 5.4 nJ of pulse energy at 77 MHz repetition rate. These are the highest energy levels reported from Cr:Colquiriite so far at these repetition rates. Our findings indicate that tapered diodes in the red spectral region are likely to become the standard pump source for Cr:Colquiriite lasers in the near future. Moreover, the simplified pumping scheme might facilitate efficient commercialization of Cr:Colquiriite systems, bearing the potential to significantly boost applications of cw and femtosecond lasers in this spectral region (750-1000 nm).

© 2011 OSA

OCIS Codes
(140.3460) Lasers and laser optics : Lasers
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(140.3580) Lasers and laser optics : Lasers, solid-state
(140.4050) Lasers and laser optics : Mode-locked lasers
(140.5680) Lasers and laser optics : Rare earth and transition metal solid-state lasers

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: July 14, 2011
Manuscript Accepted: August 22, 2011
Published: October 3, 2011

Citation
Umit Demirbas, Michael Schmalz, Bernd Sumpf, Götz Erbert, Gale S. Petrich, Leslie A. Kolodziejski, James G. Fujimoto, Franz X. Kärtner, and Alfred Leitenstorfer, "Femtosecond Cr:LiSAF and Cr:LiCAF lasers pumped by tapered diode lasers," Opt. Express 19, 20444-20461 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-21-20444


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. F. Moulton, “Spectroscopic and laser characteristics of Ti:Al2O3,” J. Opt. Soc. Am. B3(1), 125–133 (1986). [CrossRef]
  2. R. Ell, U. Morgner, F. X. Kãârtner, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, T. Tschudi, M. J. Lederer, A. Boiko, and B. Luther-Davies, “Generation of 5-fs pulses and octave-spanning spectra directly from a Ti:sapphire laser,” Opt. Lett.26(6), 373–375 (2001). [CrossRef] [PubMed]
  3. J. Klein and J. D. Kafka, “The Ti:Sapphire Laser: The flexible research tool,” Nat. Photonics4(5), 289 (2010). [CrossRef]
  4. P. W. Roth, A. J. Maclean, D. Burns, and A. J. Kemp, “Directly diode-laser-pumped Ti:sapphire laser,” Opt. Lett.34(21), 3334–3336 (2009). [CrossRef] [PubMed]
  5. J. Harrison, A. Finch, D. M. Rines, G. A. Rines, and P. F. Moulton, “Low-threshold, cw, all-solid-state Ti:Al(2)O(3) laser,” Opt. Lett.16(8), 581–583 (1991). [CrossRef] [PubMed]
  6. P. W. Roth, A. J. Maclean, D. Burns, and A. J. Kemp, “Direct diode-laser pumping of a mode-locked Ti:sapphire laser,” Opt. Lett.36(2), 304–306 (2011). [CrossRef] [PubMed]
  7. B. Resan, E. Coadou, S. Petersen, A. Thomas, P. Walther, R. Viselga, J.-M. Heritier, J. Chilla, W. Tulloch, and A. Fry, “Ultrashort pulse Ti:sapphire oscillators pumped by optically pumped semiconductor (OPS) pump lasers ” in Proc. SPIE, 2008), 687116–687118.
  8. A. Müller, O. B. Jensen, A. Unterhuber, T. Le, A. Stingl, K.-H. Hasler, B. Sumpf, G. Erbert, P. E. Andersen, and P. M. Petersen, “Frequency-doubled DBR-tapered diode laser for direct pumping of Ti:sapphire lasers generating sub-20 fs pulses,” Opt. Express19(13), 12156–12163 (2011). [CrossRef] [PubMed]
  9. S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and H. W. Newkirk, “Laser performance of LiSAIF6:Cr3+,” J. Appl. Phys.66(3), 1051–1056 (1989). [CrossRef]
  10. L. K. Smith, S. A. Payne, W. L. Kway, L. L. Chase, and B. H. T. Chai, “Investigation of the laser properties of Cr3+:LiSrGaF6,” IEEE J. Quantum Electron.28(11), 2612–2618 (1992). [CrossRef]
  11. S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, “LiCaAlF6:Cr3+ a promising new solid-state laser material,” IEEE J. Quantum Electron.24(11), 2243–2252 (1988). [CrossRef]
  12. J. F. Pinto, L. Esterowitz, and G. H. Rosenblatt, “Frequency tripling of a Q-switched Cr:LiSAF laser to the UV region,” IEEE J. Sel. Top. Quantum Electron.1(1), 58–61 (1995). [CrossRef]
  13. U. Demirbas, D. Li, J. R. Birge, A. Sennaroglu, G. S. Petrich, L. A. Kolodziejski, F. X. Kaertner, and J. G. Fujimoto, “Low-cost, single-mode diode-pumped Cr:Colquiriite lasers,” Opt. Express17(16), 14374–14388 (2009). [CrossRef] [PubMed]
  14. I. T. Sorokina, E. Sorokin, E. Wintner, A. Cassanho, H. P. Jenssen, and R. Szipöcs, “14-fs pulse generation in Kerr-lens mode-locked prismless Cr:LiSGaF and Cr:LiSAF lasers: observation of pulse self-frequency shift,” Opt. Lett.22(22), 1716–1718 (1997). [CrossRef] [PubMed]
  15. S. Uemura and K. Torizuka, “Generation of 10 fs pulses from a diode-pumped Kerr-lens mode-locked Cr:LiSAF laser,” Jpn. J. Appl. Phys.39(Part 1, No. 6A), 3472–3473 (2000). [CrossRef]
  16. P. C. Wagenblast, U. Morgner, F. Grawert, T. R. Schibli, F. X. Kärtner, V. Scheuer, G. Angelow, and M. J. Lederer, “Generation of sub-10-fs pulses from a Kerr-lens modelocked Cr3+:LiCAF laser oscillator using third order dispersion compensating double chirped mirrors,” Opt. Lett.27(19), 1726–1728 (2002). [CrossRef] [PubMed]
  17. P. Wagenblast, R. Ell, U. Morgner, F. Grawert, and F. X. Kärtner, “Diode-pumped 10-fs Cr3+:LiCAF laser,” Opt. Lett.28(18), 1713–1715 (2003). [CrossRef] [PubMed]
  18. B. Agate, B. Stormont, A. J. Kemp, C. T. A. Brown, U. Keller, and W. Sibbett, “Simplified cavity designs for efficient and compact femtosecond Cr:LiSAF lasers,” Opt. Commun.205(1-3), 207–213 (2002). [CrossRef]
  19. S. Tsuda, W. H. Knox, and S. T. Cundiff, “High efficiency diode pumping of a saturable Bragg reflector-mode-locked Cr:LiSAF femtosecond laser,” Appl. Phys. Lett.69(11), 1538–1540 (1996). [CrossRef]
  20. J. M. Hopkins, G. J. Valentine, B. Agate, A. J. Kemp, U. Keller, and W. Sibbett, “Highly compact and efficient femtosecond Cr: LiSAF lasers,” IEEE J. Quantum Electron.38(4), 360–368 (2002). [CrossRef]
  21. J. M. Hopkins, G. J. Valentine, W. Sibbett, J. A. der Au, F. Morier-Genoud, U. Keller, and A. Valster, “Efficient, low-noise, SESAM-based femtosecond Cr3+: LiSrAlF6 laser,” Opt. Commun.154(1-3), 54–58 (1998). [CrossRef]
  22. U. Demirbas, A. Sennaroglu, F. X. Kärtner, and J. G. Fujimoto, “Highly efficient, low-cost femtosecond Cr3+ :LiCAF laser pumped by single-mode diodes,” Opt. Lett.33(6), 590–592 (2008). [CrossRef] [PubMed]
  23. E. Sorokin, “Solid-state materials for few-cycle pulse generation and amplification,” in Few-cycle laser pulse generation and its applications, F. X. Kärtner, ed. (Springer-Verlag, 2004), pp. 3–71.
  24. F. Druon, F. Balembois, and P. Georges, “New laser crystals for the generation of ultrashort pulses,” C. R. Phys.8(2), 153–164 (2007). [CrossRef]
  25. S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, “Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors,” IEEE J. Sel. Top. Quantum Electron.2(3), 454–464 (1996). [CrossRef]
  26. U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.2(3), 435–453 (1996). [CrossRef]
  27. D. Kopf, K. J. Weingarten, G. Zhang, M. Moser, M. A. Emanuel, R. J. Beach, J. A. Skidmore, and U. Keller, “High-average-power diode-pumped femtosecond Cr:LiSAF lasers,” Appl. Phys. B65(2), 235–243 (1997). [CrossRef]
  28. P. M. W. French, R. Mellish, J. R. Taylor, P. J. Delfyett, and L. T. Florez, “Mode-locked all-solid-state diode-pumped Cr:LiSAF laser,” Opt. Lett.18(22), 1934–1936 (1993). [CrossRef] [PubMed]
  29. A. Isemann and C. Fallnich, “High-power Colquiriite lasers with high slope efficiencies pumped by broad-area laser diodes,” Opt. Express11(3), 259–264 (2003). [CrossRef] [PubMed]
  30. U. Demirbas, A. Sennaroglu, A. Benedick, A. Siddiqui, F. X. Kärtner, and J. G. Fujimoto, “Diode-pumped, high-average power femtosecond Cr+3:LiCAF laser,” Opt. Lett.32(22), 3309–3311 (2007). [CrossRef] [PubMed]
  31. U. Demirbas, A. Sennaroglu, F. X. Kärtner, and J. G. Fujimoto, “Comparative investigation of diode pumping for continuous-wave and mode-locked Cr3+:LiCAF lasers,” J. Opt. Soc. Am. B26(1), 64–79 (2009). [CrossRef]
  32. R. Scheps, J. F. Myers, H. B. Serreze, A. Rosenberg, R. C. Morris, and M. Long, “Diode-pumped Cr:LiSrAlF(6) laser,” Opt. Lett.16(11), 820–822 (1991). [CrossRef] [PubMed]
  33. G. J. Valentine, J. M. Hopkins, P. Loza-Alvarez, G. T. Kennedy, W. Sibbett, D. Burns, and A. Valster, “Ultralow-pump-threshold, femtosecond Cr(3+):LiSrAlF(6)laser pumped by a single narrow-stripe AlGaInP laser diode,” Opt. Lett.22(21), 1639–1641 (1997). [CrossRef] [PubMed]
  34. U. Demirbas, G. S. Petrich, D. Li, A. Sennaroglu, L. A. Kolodziejski, F. X. Kärtner, and J. G. Fujimoto, “Femtosecond tuning of Cr:Colquiriite lasers with AlGaAs-based saturable Bragg reflectors,” J. Opt. Soc. Am. B28(5), 986–993 (2011). [CrossRef]
  35. D. Li, U. Demirbas, J. R. Birge, G. S. Petrich, L. A. Kolodziejski, A. Sennaroglu, F. X. Kärtner, and J. G. Fujimoto, “Diode-pumped passively mode-locked GHz femtosecond Cr:LiSAF laser with kW peak power,” Opt. Lett.35(9), 1446–1448 (2010). [CrossRef] [PubMed]
  36. B. Sumpf, K. H. Hasler, P. Adamiec, F. Bugge, F. Dittmar, J. Fricke, H. Wenzel, M. Zorn, G. Erbert, and G. Trankle, “High-brightness quantum well tapered lasers,” IEEE J. Sel. Top. Quantum Electron.15(3), 1009–1020 (2009). [CrossRef]
  37. B. Sumpf, P. Adamiec, M. Zorn, H. Wenzel, and G. Erbert, “Nearly diffraction limited tapered lasers at 675 nm with 1 W output power and conversion efficiencies above 30%,” Photon. Technol. Lett.23(4), 266–268 (2011). [CrossRef]
  38. P. Klopp, V. Petrov, U. Griebner, and G. Erbert, “Passively mode-locked Yb:KYWlaser pumped by a tapered diode laser,” Opt. Express10(2), 108–113 (2002). [PubMed]
  39. H. P. H. Cheng, O. B. Jensen, P. Tidemand-Lichtenberg, P. E. Andersen, P. M. Petersen, B. Sumpf, G. Erbert, and C. Pedersen, “Efficient quasi-three-level Nd:YAG laser at 946 nm pumped by a tunable external cavity tapered diode laser,” Opt. Commun.283(23), 4717–4721 (2010). [CrossRef]
  40. A. Robertson, R. Knappe, and R. Wallenstein, “Diode-pumped broadly tunable (809-910 nm) femtosecond Cr: LiSAF laser,” Opt. Commun.147(4-6), 294–298 (1998). [CrossRef]
  41. S. Sakadzić, U. Demirbas, T. R. Mempel, A. Moore, S. Ruvinskaya, D. A. Boas, A. Sennaroglu, F. X. Kaertner, and J. G. Fujimoto, “Multi-photon microscopy with a low-cost and highly efficient Cr:LiCAF laser,” Opt. Express16(25), 20848–20863 (2008). [CrossRef] [PubMed]
  42. K. A. Tillman, D. T. Reid, D. Artigas, J. Hellstrom, V. Pasiskevicius, and F. Laurell, “Low-threshold, high-repetition-frequency femtosecond optical parametric oscillator based on chirped-pulse frequency conversion,” J. Opt. Soc. Am. B20(6), 1309–1316 (2003). [CrossRef]
  43. F. X. Kärtner, J. A. der Au, and U. Keller, “Mode-locking with slow and gast daturable absorbers - what's the difference?” IEEE J. Sel. Top. Quantum Electron.4(2), 159–168 (1998). [CrossRef]
  44. D. Findlay and R. A. Clay, “The measurement of internal losses in 4-level lasers,” Phys. Lett.20(3), 277–278 (1966). [CrossRef]
  45. G. Lacayo, I. Hahnert, D. Klimm, P. Reiche, and W. Neumann, “Transmission electron microscope study of secondary phases in Cr3+: LiCaAlF6 single crystals,” Cryst. Res. Technol.34(9), 1221–1227 (1999). [CrossRef]
  46. D. Klimm and P. Reiche, “Ternary colquiriite type fluorides as laser hosts,” Cryst. Res. Technol.34(2), 145–152 (1999). [CrossRef]
  47. D. Klimm and P. Reiche, “Nonstoichiometry of the new laser host LiCaAlF6,” Cryst. Res. Technol.33(3), 409–416 (1998). [CrossRef]
  48. D. Klimm, G. Lacayo, and P. Reiche, “Growth of Cr:LiCaAlF6 and Cr:LiSrAlF6 by the Czochralski method,” J. Cryst. Growth210(4), 683–693 (2000). [CrossRef]
  49. M. Stalder, M. Bass, and B. H. T. Chai, “Thermal quenching of fluoresence in chromium-doped fluoride laser crystals,” J. Opt. Soc. Am. B9(12), 2271–2273 (1992). [CrossRef]
  50. F. Balembois, F. Falcoz, F. Kerboull, F. Druon, P. Georges, and A. Brun, “Theoretical and experimental investigations of small-signal gain for a diode-pumped Q-Switched Cr:LiSAF laser,” IEEE J. Quantum Electron.33(2), 269–278 (1997). [CrossRef]
  51. J. M. Eichenholz and M. Richardson, “Measurement of thermal lensing in Cr3+-doped colquiriites,” IEEE J. Quantum Electron.34(5), 910–919 (1998). [CrossRef]
  52. U. Demirbas, K. H. Hong, J. G. Fujimoto, A. Sennaroglu, and F. X. Kärtner, “Low-cost cavity-dumped femtosecond Cr:LiSAF laser producing >100 nJ pulses,” Opt. Lett.35(4), 607–609 (2010). [CrossRef] [PubMed]
  53. U. Demirbas, A. Benedick, A. Sennaroglu, D. Li, J. Kim, J. G. Fujimoto, and F. X. Kärtner, “Attosecond resolution timing jitter characterization of diode pumped femtosecond Cr:LiSAF lasers,” in CLEO, (San Jose, California, 2010).
  54. O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B91(2), 343–348 (2008). [CrossRef]
  55. U. Demirbas, A. Sennaroglu, F. X. Kärtner, and J. G. Fujimoto, “Generation of 15 nJ pulses from a highly efficient, low-cost multipass-cavity Cr3+:LiCAF laser,” Opt. Lett.34(4), 497–499 (2009). [CrossRef] [PubMed]
  56. S. N. Tandon, J. T. Gopinath, H. M. Shen, G. S. Petrich, L. A. Kolodziejski, F. X. Kärtner, and E. P. Ippen, “Large-area broadband saturable Bragg reflectors by use of oxidized AlAs,” Opt. Lett.29(21), 2551–2553 (2004). [CrossRef] [PubMed]
  57. L.-J. Chen, M. Y. Sander, and F. X. Kärtner, “Kerr-lens mode locking with minimum nonlinearity using gain-matched output couplers,” Opt. Lett.35(17), 2916–2918 (2010). [CrossRef] [PubMed]
  58. K. Minoshima, A. M. Kowalevicz, I. Hartl, E. P. Ippen, and J. G. Fujimoto, “Photonic device fabrication in glass by use of nonlinear materials processing with a femtosecond laser oscillator,” Opt. Lett.26(19), 1516–1518 (2001). [CrossRef] [PubMed]
  59. P. Theer, M. T. Hasan, and W. Denk, “Two-photon imaging to a depth of 1000 um in living brains by use of a Ti: Al2O3 regenerative amplifier,” Opt. Lett.28(12), 1022–1024 (2003). [CrossRef] [PubMed]
  60. F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods2(12), 932–940 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited