OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 21 — Oct. 10, 2011
  • pp: 20483–20492

Phase extraction from randomly phase-shifted interferograms by combining principal component analysis and least squares method

Jiancheng Xu, Weimin Jin, Liqun Chai, and Qiao Xu  »View Author Affiliations


Optics Express, Vol. 19, Issue 21, pp. 20483-20492 (2011)
http://dx.doi.org/10.1364/OE.19.020483


View Full Text Article

Enhanced HTML    Acrobat PDF (2120 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A method combining the principal component analysis (PCA) and the least squares method (LSM) is proposed to extract the phase from interferograms with random phase shifts. The method estimates the initial phase by PCA, and then determines the correct global phase sign and reduces the residual phase error by LSM. Some factors that may influence the performance of the proposed method are analyzed and discussed, such as the number of frames used, the number of fringes in interferogram and the amplitude of random phase shifts. Numerical simulations and optical experiments are implemented to verify the effectiveness of this method. The proposed method is suitable for randomly phase-shifted interferograms.

© 2011 OSA

OCIS Codes
(120.2650) Instrumentation, measurement, and metrology : Fringe analysis
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.5050) Instrumentation, measurement, and metrology : Phase measurement

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: July 19, 2011
Revised Manuscript: September 7, 2011
Manuscript Accepted: September 20, 2011
Published: October 3, 2011

Citation
Jiancheng Xu, Weimin Jin, Liqun Chai, and Qiao Xu, "Phase extraction from randomly phase-shifted interferograms by combining principal component analysis and least squares method," Opt. Express 19, 20483-20492 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-21-20483


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. L. Deck, “Suppressing phase errors from vibration in phase-shifting interferometry,” Appl. Opt.48(20), 3948–3960 (2009). [CrossRef] [PubMed]
  2. Y.-Y. Cheng and J. C. Wyant, “Phase shifter calibration in phase-shifting interferometry,” Appl. Opt.24(18), 3049–3052 (1985). [CrossRef] [PubMed]
  3. P. Hariharan, B. F. Oreb, and T. Eiju, “Digital phase-shifting interferometry: a simple error-compensating phase calculation algorithm,” Appl. Opt.26(13), 2504–2506 (1987). [CrossRef] [PubMed]
  4. P. L. Wizinowich, “Phase shifting interferometry in the presence of vibration: a new algorithm and system,” Appl. Opt.29(22), 3271–3279 (1990). [CrossRef] [PubMed]
  5. K. G. Larkin and B. F. Oreb, “Design and assessment of symmetrical phase-shifting algorithms,” J. Opt. Soc. Am. A9(10), 1740–1748 (1992). [CrossRef]
  6. Y. Surrel, “Phase stepping: a new self-calibrating algorithm,” Appl. Opt.32(19), 3598–3600 (1993). [CrossRef] [PubMed]
  7. Y. Ishii and R. Onodera, “Phase-extraction algorithm in laser-diode phase-shifting interferometry,” Opt. Lett.20(18), 1883–1885 (1995). [CrossRef] [PubMed]
  8. K. Hibino, B. F. Oreb, D. I. Farrant, and K. G. Larkin, “Phase shifting for nonsinusoidal waveforms with phase-shift errors,” J. Opt. Soc. Am. A12(4), 761–768 (1995). [CrossRef]
  9. K. Hibino, B. F. Oreb, D. I. Farrant, and K. G. Larkin, “Phase-shifting algorithms for nonlinear and spatially nonuniform phase shifts,” J. Opt. Soc. Am. A14(4), 918–930 (1997). [CrossRef]
  10. K. Okada, A. Sato, and J. Tsujiuchi, “Simultaneous calculation of phase distribution and scanning phase shift in phase shifting interferometry,” Opt. Commun.84(3-4), 118–124 (1991). [CrossRef]
  11. G.-S. Han and S.-W. Kim, “Numerical correction of reference phases in phase-shifting interferometry by iterative least-squares fitting,” Appl. Opt.33(31), 7321–7325 (1994). [CrossRef] [PubMed]
  12. B. Kong and S.-W. Kim, “General algorithm of phase-shifting interferometry by iterative least-squares fitting,” Opt. Eng.34(1), 183–188 (1995). [CrossRef]
  13. Z. Wang and B. Han, “Advanced iterative algorithm for phase extraction of randomly phase-shifted interferograms,” Opt. Lett.29(14), 1671–1673 (2004). [CrossRef] [PubMed]
  14. X. F. Xu, L. Z. Cai, X. F. Meng, G. Y. Dong, and X. X. Shen, “Fast blind extraction of arbitrary unknown phase shifts by an iterative tangent approach in generalized phase-shifting interferometry,” Opt. Lett.31(13), 1966–1968 (2006). [CrossRef] [PubMed]
  15. R. Langoju, A. Patil, and P. Rastogi, “Phase-shifting interferometry in the presence of nonlinear phase steps, harmonics, and noise,” Opt. Lett.31(8), 1058–1060 (2006). [CrossRef] [PubMed]
  16. H. Guo, Y. Yu, and M. Chen, “Blind phase shift estimation in phase-shifting interferometry,” J. Opt. Soc. Am. A24(1), 25–33 (2007). [CrossRef] [PubMed]
  17. A. Dobroiu, P. C. Logofatu, D. Apostol, and V. Damian, “Statistical self-calibrating algorithm for three-sample phase-shift interferometry,” Meas. Sci. Technol.8(7), 738–745 (1997). [CrossRef]
  18. A. Dobroiu, D. Apostol, V. Nascov, and V. Damian, “Self-calibrating algorithm for three-sample phase-shift interferometry by contrast leveling,” Meas. Sci. Technol.9(5), 744–750 (1998). [CrossRef]
  19. A. Dobroiu, D. Apostol, V. Nascov, and V. Damian, “Statistical self-calibrating algorithm for phase-shift interferometry based on a smoothness assessment of the intensity offset map,” Meas. Sci. Technol.9(9), 1451–1455 (1998). [CrossRef]
  20. L. Z. Cai, Q. Liu, and X. L. Yang, “Generalized phase-shifting interferometry with arbitrary unknown phase steps for diffraction objects,” Opt. Lett.29(2), 183–185 (2004). [CrossRef] [PubMed]
  21. X. F. Xu, L. Z. Cai, Y. R. Wang, X. F. Meng, W. J. Sun, H. Zhang, X. C. Cheng, G. Y. Dong, and X. X. Shen, “Simple direct extraction of unknown phase shift and wavefront reconstruction in generalized phase-shifting interferometry: algorithm and experiments,” Opt. Lett.33(8), 776–778 (2008). [CrossRef] [PubMed]
  22. X. Xian-Feng, C. Lu-Zhong, W. Yu-Rong, and L. Dai-Lin, “Accurate phase shift extraction for generalized phase-shifting interferometry,” Chin. Phys. Lett.27(2), 024215 (2010). [CrossRef]
  23. X. F. Meng, X. Peng, L. Z. Cai, A. M. Li, J. P. Guo, and Y. R. Wang, “Wavefront reconstruction and three-dimensional shape measurement by two-step dc-term-suppressed phase-shifted intensities,” Opt. Lett.34(8), 1210–1212 (2009). [CrossRef] [PubMed]
  24. P. Gao, B. Yao, N. Lindlein, J. Schwider, K. Mantel, I. Harder, and E. Geist, “Phase-shift extraction for generalized phase-shifting interferometry,” Opt. Lett.34(22), 3553–3555 (2009). [CrossRef] [PubMed]
  25. K. A. Goldberg and J. Bokor, “Fourier-transform method of phase-shift determination,” Appl. Opt.40(17), 2886–2894 (2001). [CrossRef] [PubMed]
  26. X. Chen, M. Gramaglia, and J. A. Yeazell, “Phase-shifting interferometry with uncalibrated phase shifts,” Appl. Opt.39(4), 585–591 (2000). [CrossRef] [PubMed]
  27. X. Chen, M. Gramaglia, and J. A. Yeazell, “Phase-shift calibration algorithm for phase-shifting interferometry,” J. Opt. Soc. Am. A17(11), 2061–2066 (2000). [CrossRef] [PubMed]
  28. J. Xu, Y. Li, H. Wang, L. Chai, and Q. Xu, “Phase-shift extraction for phase-shifting interferometry by histogram of phase difference,” Opt. Express18(23), 24368–24378 (2010). [CrossRef] [PubMed]
  29. J. Vargas, J. A. Quiroga, and T. Belenguer, “Phase-shifting interferometry based on principal component analysis,” Opt. Lett.36(8), 1326–1328 (2011). [CrossRef] [PubMed]
  30. J. Vargas, J. A. Quiroga, and T. Belenguer, “Analysis of the principal component algorithm in phase-shifting interferometry,” Opt. Lett.36(12), 2215–2217 (2011). [CrossRef] [PubMed]
  31. J. Xu, L. Sun, Y. Li, and Y. Li, “Principal component analysis of multiple-beam Fizeau interferograms with random phase shifts,” Opt. Express19(15), 14464–14472 (2011). [CrossRef] [PubMed]
  32. http://en.wikipedia.org/wiki/Principal_component_analysis .
  33. http://en.wikipedia.org/wiki/Singular_value_decomposition .
  34. http://en.wikipedia.org/wiki/Karhunen%E2%80%93Lo%C3%A8ve_theorem .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited