OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 21 — Oct. 10, 2011
  • pp: 20506–20517

Theory of noise in high-gain surface plasmon-polariton amplifiers incorporating dipolar gain media

Israel De Leon and Pierre Berini  »View Author Affiliations

Optics Express, Vol. 19, Issue 21, pp. 20506-20517 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (946 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A theoretical analysis of noise in high-gain surface plasmon-polariton amplifiers incorporating dipolar gain media is presented. An expression for the noise figure is obtained in terms of the spontaneous emission rate into the amplified surface plasmon-polariton taking into account the different energy decay channels experienced by dipoles in close proximity to the metallic surface. Two amplifier structures are examined: a single-interface between a metal and a gain medium and a thin metal film bounded by identical gain media on both sides. A realistic configuration is considered where the surface plasmon-polariton undergoing amplification has a Gaussian field profile in the plane of the metal and paraxial propagation along the amplifier’s length. The noise figure of these plasmonic amplifiers is studied considering three prototypical gain media with different permittivities. It is shown that the noise figure exhibits a strong dependance on the real part of the permittivities of the metal and gain medium, and that its minimum value is 4 / π ( 3.53 dB ). The origin of this minimum value is discussed. It is also shown that amplifier configurations supporting strongly confined surface plasmon-polaritons suffer from a large noise figure, which follows from an enhanced spontaneous emission rate due to the Purcell effect.

© 2011 OSA

OCIS Codes
(130.2790) Integrated optics : Guided waves
(140.4480) Lasers and laser optics : Optical amplifiers
(240.6680) Optics at surfaces : Surface plasmons
(260.3910) Physical optics : Metal optics

ToC Category:
Optics at Surfaces

Original Manuscript: July 25, 2011
Revised Manuscript: September 3, 2011
Manuscript Accepted: September 3, 2011
Published: October 3, 2011

Israel De Leon and Pierre Berini, "Theory of noise in high-gain surface plasmon-polariton amplifiers incorporating dipolar gain media," Opt. Express 19, 20506-20517 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, Berlin, 1988).
  2. P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photon. 1, 484–588 (2009). [CrossRef]
  3. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003). [CrossRef] [PubMed]
  4. S. Maier and H. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101 (2005). [CrossRef]
  5. T. Neumann, M. Johansson, D. Kambhampati, and W. Knoll, “Surface-plasmon fluorescence spectroscopy,” Adv. Funct. Mater. 12, 575–586 (2002). [CrossRef]
  6. E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006). [CrossRef] [PubMed]
  7. S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nature Photon. 3, 388–394 (2009). [CrossRef]
  8. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nature Mater. 7, 442–453 (2008). [CrossRef]
  9. J. Seidel, S. Grafstrom, and L. Eng, “Stimulated emission of surface plasmons at the interface between a silver film and an optically pumped dye solution.” Phys. Rev. Lett. 94, 177401 (2005). [CrossRef] [PubMed]
  10. M. Ambati, S. H. Nam, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Observation of stimulated emission of surface plasmon polaritons,” Nano Lett. 8, 3998–4001 (2008). [CrossRef] [PubMed]
  11. J. Grandidier, G. Colas des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9, 2935–2939 (2009). [CrossRef] [PubMed]
  12. I. De Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nature Photon. 4, 382–387 (2010). [CrossRef]
  13. M. C. Gather, K. Meerholz, N. Danz, and K. Leosson, “Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer.” Nature Photon. 4, 457–461 (2010). [CrossRef]
  14. P. M. Bolger, W. Dickson, A. V. Krasavin, L. Liebscher, S. G. Hickey, D. V. Skryabin, and A. V. Zayats, “Amplified spontaneous emission of surface plasmon polaritons and limitations on the increase of their propagation length,” Opt. Lett. 35, 1197–1199 (2010). [CrossRef] [PubMed]
  15. I. P. Radko, M. G. Nielsen, O. Albrektsen, and S. I. Bozhevolnyi, “Stimulated emission of surface plasmon polaritons by lead-sulphide quantum dots at near infra-red wavelengths.” Opt. Express. 18, 18633–18641 (2010). [CrossRef] [PubMed]
  16. M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. D. Vries, P. J. V. Veldhoven, F. W. M. Van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. D. Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nature Photon. 1, 589–594 (2007). [CrossRef]
  17. R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009). [CrossRef] [PubMed]
  18. D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems.” Phys. Rev. Lett. 90, 027402 (2003). [CrossRef] [PubMed]
  19. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1113 (2009). [CrossRef] [PubMed]
  20. L. Thylen, P. Holmstrom, A. Bratkovsky, J. Li, and S.-Y. Wang, “Limits on integration as determined by power dissipation and signal-to-noise ratio in loss-compensated photonic integrated circuits based on metal/quantum-dot materials,” IEEE J. Quantum Electron. 46, 518–524 (2010). [CrossRef]
  21. I. De Leon and P. Berini, “Spontaneous emission in long-range surface plasmon-polariton amplifiers,” Phys. Rev. B 83, 081414(R) (2011). [CrossRef]
  22. R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. Chem. Phys. 37, 1–65 (1978). [CrossRef]
  23. G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces.” Phys. Rep. 113, 195–287 (1984). [CrossRef]
  24. H. Kogelnik and A. Yariv, “Considerations of noise and schemes for its reduction in laser amplifiers,” Proc. IEEE 52, 165–172 (1964). [CrossRef]
  25. E. Desurvire, Erbium Doped Fiber Amplifiers (Wiley-Interscience, 1994).
  26. I. De Leon and P. Berini, “Modeling surface plasmon-polariton gain in planar metallic structures,” Opt. Express 17, 20191–2020 (2009). [CrossRef] [PubMed]
  27. R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwave-length plasmonic modes,” New J. Phys. 10, 105018 (2008). [CrossRef]
  28. A. E. Siegman, Lasers (University Science Books, California, 1986).
  29. I. De Leon and P. Berini, “Theory of surface plasmon-polariton amplification in planar structures incorporating dipolar gain media,” Phys. Rev. B 78, 161401(R) (2008). [CrossRef]
  30. C. H. Henry, “Theory of spontaneous emission noise in open resonators and its application to lasers and optical amplifiers,” J. Lightwave Technol. 4, 288–297 (1986). [CrossRef]
  31. W. L. Barnes, “Electromagnetic crystals for surface plasmon polaritons and the extraction of light from emissive devices,” J. Lightwave Technol. 17, 2170–2182 (1999). [CrossRef]
  32. A. Hryciw, Y. Jun, and M. Brongersma, “Plasmon-enhanced emission from optically-doped MOS light sources,” Opt. Express 17, 185–192 (2009). [CrossRef] [PubMed]
  33. M. Nezhad, K. Tetz, and Y. Fainman, “Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides,” Opt. Express 12, 4072–4079 (2004). [CrossRef] [PubMed]
  34. C. Chen, P. Berini, D. Feng, S. Tanev, and V. P. Tzolov, “Efficient and accurate numerical analysis of multilayer planar optical waveguides in lossy anisotropic media,” Opt. Express 7, 260–272 (2000). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited