OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 21 — Oct. 10, 2011
  • pp: 20542–20550

Thermal imaging of a heat transport in regions structured by femtosecond laser

Junko Morikawa, Eita Hayakawa, Toshimasa Hashimoto, Ričardas Buividas, and Saulius Juodkazis  »View Author Affiliations

Optics Express, Vol. 19, Issue 21, pp. 20542-20550 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1275 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A non-contact determination of thermal diffusivity and spatial distribution of temperature on tens-of-micrometers scale is demonstrated by thermal imaging. Temperature localization and a heat flow have been in situ monitored with ∼ 10 ms temporal resolution in Kapton polymer films structured by femtosecond laser pulses. The structured regions can localize temperature and create strong thermal gradients of few degrees over tens-of-micrometers (∼ 0.1 K/μm). This is used to induce an anisotropy in a heat transport. Temperature changes on the order of ∼ 0.1°C were reliably detected and spatial spreading by diffusion was monitored using Fourier analysis. Application potential, miniaturization prospects, and emissivity changes induced by laser structuring of materials are discussed.

© 2011 OSA

OCIS Codes
(110.3080) Imaging systems : Infrared imaging
(110.6820) Imaging systems : Thermal imaging
(140.3390) Lasers and laser optics : Laser materials processing
(160.5470) Materials : Polymers
(350.3850) Other areas of optics : Materials processing
(160.1245) Materials : Artificially engineered materials

ToC Category:
Imaging Systems

Original Manuscript: July 25, 2011
Revised Manuscript: September 5, 2011
Manuscript Accepted: September 5, 2011
Published: October 3, 2011

Junko Morikawa, Eita Hayakawa, Toshimasa Hashimoto, Ričardas Buividas, and Saulius Juodkazis, "Thermal imaging of a heat transport in regions structured by femtosecond laser," Opt. Express 19, 20542-20550 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Baldacchini, C. N. LaFratta, R. A. Farrer, M. C. Teich, B. E. A. Saleh, M. J. Naughton, and J. T. Fourkas, “Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization,” J. Appl. Phys. 95, 6072–6076 (2004). [CrossRef]
  2. M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photon. Rev. 3, 535–544 (2009). [CrossRef]
  3. S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 2, 132 – 134 (1997). [CrossRef]
  4. S. Maruo and K. Ikuta, “Three-dimensional microfabrication by use of single-photon-absorbed polymerization,” Appl. Phys. Lett. 76, 2656–2658 (2000). [CrossRef]
  5. S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412, 697–698 (2001). [CrossRef] [PubMed]
  6. O. Breitenstein, J. Bauer, K. Bothe, W. Kwapil, D. Lausch, U. Rau, J. Schmidt, M. Schneemann, M. C. Schubert, J.-M. Wagner, and W. Warta, “Understanding junction breakdown in multicrystalline solar cells,” J. Appl. Phys. 109, 071101 (2011). [CrossRef]
  7. K. Juodkazis, J. Juodkazytė, P. Kalinauskas, E. Jelmakas, and S. Juodkazis, “Photoelectrolysis of water: Solar hydrogen - achievements and perspectives,” Opt. Express: energy express 18, A147–A160 (2010). [CrossRef]
  8. M. Schmotz, P. Bookjans, E. Scheer, and P. Leiderer, “Optical temperature measurements on thin freestanding silicon membranes,” Rev. Sci. Instrum. 81, 114903 (2010). [CrossRef] [PubMed]
  9. W. Gawelda, D. Puerto, J. Siegel, A. Ferrer, A. R. de la Cruz, H. Fernandez, and J. Solis, “Ultrafast imaging of transient electronic plasmas produced in conditions of femtosecond waveguide writing in dielectrics,” Appl. Phys. Lett. 93, 121109 (2008). [CrossRef]
  10. Y. Bellouard, M. Dugan, A. A. Said, and P. Bado, “Thermal conductivity contrast measurement of fused silica exposed to low-energy femtosecond laser pulses,” Appl. Phys. Lett. 89, 161911 (2006). [CrossRef]
  11. J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, “Thermal diffusivity in femtosecond-laser-structured micro-volumes of polymers,” Appl. Phys. A. 98(3), 551–556 (2010). [CrossRef]
  12. J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, “Thermal and optical properties of femtosecond laser-structured PMMA,” Appl. Phys. A 101, 27–31 (2010). [CrossRef]
  13. J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, “Thermal and optical properties of the femtosecond-laser-structured and stress-induced birefringent regions of sapphire,” Opt. Express 18, 8300–8310 (2010). [CrossRef] [PubMed]
  14. M. Farsari and B. Chichkov, “Materials processing: Two-photon fabrication,” Nature Photonics 3, 450 – 452 (2009). [CrossRef]
  15. K. K. Seet, S. Juodkazis, V. Jarutis, and H. Misawa, “Feature-size reduction of photopolymerized structures by femtosecond optical curing of SU-8,” Appl. Phys. Lett. 89, 024106 (2006). [CrossRef]
  16. L. Hallo, C. Mézel, A. Bourgeade, D. Hébert, E. G. Gamaly, and S. Juodkazis, Laser-Matter Interaction in Transparent Materials: Confined Micro-explosion and Jet Formation, 121–146. NATO Science for Peace and Security Series B: Physics and Biophysics, Springer Netherlands, 2009.
  17. T. Kudrius, G. Šlekys, and S. Juodkazis, “Surface-texturing of sapphire by femtosecond laser pulses for photonic applications,” J. Phys. D: Appl. Phys. 43, 145501 (2010). [CrossRef]
  18. L. Bressel, D. de Ligny, C. Sonneville, V. Martinez-Andrieux, V. Mizeikis, R. Buividas, and S. Juodkazis, “Femtosecond laser induced density changes in GeO2 and SiO2 glasses: fictive temperature effect,” Opt. Mater. Express 1, 605–613 (2011). [CrossRef]
  19. G. Cerullo, R. Osellame, S. Taccheo, M. Marangoni, D. Polli, R. Ramponi, P. Laporta, and S. D. Silvestri, “Femtosecond micromachining of symmetric waveguides at 1.5μm by astigmatic beam focusing,” Opt. Lett. 27, 1938–1940 (2002). [CrossRef]
  20. G. Cheng, K. Mishchik, C. Mauclair, E. Audouard, and R. Stoian, “Ultrafast laser photoinscription of polarization sensitive devices in bulk silica glass,” Opt. Express 17, 9515–9525 (2009). [CrossRef] [PubMed]
  21. D. Day and M. Gu, “Microchannel fabrication in PMMA based on localized heating by nanojoule high repetition rate femtosecond pulses,” Opt. Express 13, 5939–5946 (2005). [CrossRef] [PubMed]
  22. S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A 77, 109–111 (2003). [CrossRef]
  23. L. Shah, A. Arai, S. Eaton, and P. Herman, “Waveguide writing in fused silica with a femtosecond fiber laser at 522 nm and 1 MHz repetition rate,” Opt. Express 13, 1999–2006 (2005). [CrossRef] [PubMed]
  24. J. Wu and X. Gan, “Three dimensional nanoparticle trapping enhanced by surface plasmon resonance,” Opt. Express 18, 27619–27626 (2010). [CrossRef]
  25. H. Misawa and S. Juodkazis, “Photophysics and photochemistry of a laser manipulated microparticle,” Prog. Polym. Sci. 24, 665–697 (1999). [CrossRef]
  26. E. Brasselet and S. Juodkazis, “Optical angular manipulation of liquid crystal droplets in laser tweezers,” J. of Nonlin. Opt. Phys. and Mat. 18, 167–194 (2009). [CrossRef]
  27. O. A. Louchev, S. Juodkazis, N. Murazawa, S. Wada, and H. Misawa, “Coupled laser molecular trapping, cluster assembly, and deposition fed by laser-induced Marangoni convection,” Opt. Express 16, 5673–5680 (2008). [CrossRef] [PubMed]
  28. A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, “Enhanced thermoelectric performance of rough silicon nanowires,” Nature 451, 163 – 167 (2008). [CrossRef] [PubMed]
  29. J. Morikawa, A. Orie, Y. Hikima, T. Hashimoto, and S. Juodkazis, “Influence of ordering change on the optical and thermal properties of inflation polyethylene films,” Appl. Surf. Sci. 257, 5439–5442 (2011). [CrossRef]
  30. Y. Gu, X. Tang, Y. Xu, and I. Hatta, “Ingenious method for eliminating effects of heat loss in measurements of thermal diffusivity by ac calorimetric method,” Jpn. J. Appl. Phys. 32, L1365 – L1367 (1993). [CrossRef]
  31. J. Morikawa and T. Hashimoto, “Thermal diffusivity of aromatic polyimide thin films by temperature wave analysis,” J. Appl. Phys. 105, 113506 (2009). [CrossRef]
  32. S. Tomonari, H. Yoshida, M. Kamakura, K. Yoshida, K. Kawahito, M. Saitoh, H. Kawada, S. Juodkazis, and H. Misawa, “Efficient microvalve driven by a Si-Ni bimorph,” Jpn. J. Appl. Phys. 42(part 1, No.7A), 4464–4468 (2003). [CrossRef]
  33. S. Tomonari, H. Yoshida, M. Kamakura, K. Yoshida, K. Kawahito, M. Saitoh, H. Kawada, S. Juodkazis, and H. Misawa, “Miniaturization of a thermally driven Ni|Si bimorph,” Jpn. J. Appl. Phys. 42(part 1, No.7A), 4593–4597 (2003). [CrossRef]
  34. R. Krishnan, S. Shirota, Y. Tanaka, and N. Nishiguchi, “High-efficient acoustic wave rectifier,” Sol. State Comm. 144, 194–197 (2007). [CrossRef]
  35. E. Gamaly, S. Juodkazis, V. Mizeikis, H. Misawa, A. Rode, and W. Krolokowski, “Modification of refractive index by a single fs-pulse confined inside a bulk of a photo-refractive crystal,” Phys. Rev. B 81, 054113 (2010). [CrossRef]
  36. S. Juodkazis, M. Sudzius, V. Mizeikis, H. Misawa, E. G. Gamaly, Y. Liu, O. A. Louchev, and K. Kitamura, “Three-dimensional recording by tightly focused femtosecond pulses in LiNbO3,” Appl. Phys. Lett. 89, 062903 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

Supplementary Material

» Media 1: MPG (2620 KB)     
» Media 2: MPG (4372 KB)     
» Media 3: MPG (559 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited