OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 21 — Oct. 10, 2011
  • pp: 20597–20603

Quantum entanglement distribution with 810 nm photons through active telecommunication fibers

Catherine Holloway, Evan Meyer-Scott, Chris Erven, and Thomas Jennewein  »View Author Affiliations

Optics Express, Vol. 19, Issue 21, pp. 20597-20603 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (897 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate the distribution of polarization-entangled photons for the purpose of quantum key distribution (QKD) along active telecom fibers. Entangled photon pairs of 810 nm wavelength generated by a Sagnac interferometer source were coupled into standard telecom single mode fibers. The fibers were either dark or carrying a standardized 1550 nm ethernet signals (1000BASE-ZX) with a nominal speed of 1 GBps from regular media converter devices, without any requirements on the optical power or spectrum transmitted. Our system demonstrates a QKD network covering 6 km in distance with a central service provider for classical and quantum data.

© 2011 OSA

OCIS Codes
(060.2430) Fiber optics and optical communications : Fibers, single-mode
(060.4230) Fiber optics and optical communications : Multiplexing
(060.4510) Fiber optics and optical communications : Optical communications
(270.0270) Quantum optics : Quantum optics
(270.5565) Quantum optics : Quantum communications
(270.5568) Quantum optics : Quantum cryptography

ToC Category:
Quantum Optics

Original Manuscript: August 8, 2011
Revised Manuscript: September 12, 2011
Manuscript Accepted: September 13, 2011
Published: October 3, 2011

Catherine Holloway, Evan Meyer-Scott, Chris Erven, and Thomas Jennewein, "Quantum entanglement distribution with 810 nm photons through active telecommunication fibers," Opt. Express 19, 20597-20603 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. G. Paterson, F. Piper, and R. Schack, “Quantum cryptography: a practical information security perspective,” arXiv.org, arXiv:quant-ph/0406147v2 (2004).
  2. C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” in Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, (IEEE, 1984), p. 175.
  3. C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without bell’s theorem,” Phys. Rev. Lett. 68, 557–559 (1992). [CrossRef] [PubMed]
  4. T. C. Ralph, “Continuous variable quantum cryptography,” Phys. Rev. A 61, 010303 (1999). [CrossRef]
  5. C. Erven, C. Couteau, R. Laflamme, and G. Weihs, “Entangled quantum key distribution over two free-space optical links,” Opt. Express 16, 16840–16853 (2008). [CrossRef] [PubMed]
  6. R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3, 481–486 (2007). [CrossRef]
  7. C. Kurtsiefer, P. Zarda, M. Halder, H. Weinfurter, P. Gorman, P. Tapster, and J. Rarity, “Quantum cryptography: a step towards global key distribution,” Nature 419, 450–450 (2002). [CrossRef] [PubMed]
  8. A. Poppe, A. Fedrizzi, R. Ursin, H. Böhm, T. Lörunser, O. Maurhardt, M. Peev, M. Suda, C. Kurtsiefer, H. Weinfurter, T. Jennewein, and A. Zeilinger, “Practical quantum key distribution with polarization entangled photons,” Opt. Express 12, 3865–3871 (2004). [CrossRef] [PubMed]
  9. H. Hübel, M. R. Vanner, T. Lederer, B. Blauensteiner, T. Lorünser, A. Poppe, and A. Zeilinger, “High-fidelity transmission of polarization encoded qubits from an entangled source over 100 km of fiber,” Opt. Express 15, 7853–7862 (2007). [CrossRef] [PubMed]
  10. P. Hiskett, D. Rosenberg, C. Peterson, R. Hughes, S. Nam, A. Lita, A. Miller, and J. Nordholt, “Long-distance quantum key distribution in optical fibre,” New J. Phys. 8, 193 (2006). [CrossRef]
  11. D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, “Quantum key distribution over 67 km with a plug&play system,” New J. Phys. 4, 41 (2002). [CrossRef]
  12. T. Chapuran, P. Toliver, N. Peters, J. Jackel, M. Goodman, R. Runser, S. McNown, N. Dallmann, R. Hughes, K. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, “Optical networking for quantum key distribution and quantum communications,” New J. Phys. 11, 105001 (2009). [CrossRef]
  13. P. Eraerds, N. Walenta, M. Legré, N. Gisin, and H. Zbinden, “Quantum key distribution and 1 gbps data encryption over a single fibre,” New J. Phys. 12, 063027 (2010). [CrossRef]
  14. N. A. Peters, P. Toliver, T. E. Chapuran, R. J. Runser, S. R. McNown, C. G. Peterson, D. Rosenberg, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, and K. T. Tyagi, “Dense wavelength multiplexing of 1550 nm qkd with strong classical channels in reconfigurable networking environments,” New J. Phys. 11, 045012 (2009). [CrossRef]
  15. D. Lancho, J. Martinez, D. Elkouss, M. Soto, and V. Martin, “Qkd in standard optical telecommunications networks,” in Quantum Communication and Quantum Networking, vol. 36 of Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, O. Akan, P. Bellavista, J. Cao, F. Dressler, D. Ferrari, M. Gerla, H. Kobayashi, S. Palazzo, S. Sahni, X. S. Shen, M. Stan, J. Xiaohua, A. Zomaya, G. Coulson, A. Sergienko, S. Pascazio, and P. Villoresi, eds. (Springer, Berlin, 2010), pp. 142–149. [CrossRef]
  16. I. Choi, R. J. Young, and P. D. Townsend, “Quantum information to the home,” New J. Phys. 13, 063039 (2011). [CrossRef]
  17. G. S. Buller and R. J. Collins, “Single-photon generation and detection,” Measurement Sci. Technol. 21, 012002 (2010). [CrossRef]
  18. H. C. Lim, A. Yoshizawa, H. Tsuchida, and K. Kikuchi, “Distribution of polarization-entangled photonpairsproduced via spontaneous parametricdown-conversion within a local-area fibernetwork: Theoretical model and experiment,” Opt. Express 16, 14512–14523 (2008). [CrossRef] [PubMed]
  19. E. Meyer-Scott, H. Hubel, A. Fedrizzi, C. Erven, G. Weihs, and T. Jennewein, “Quantum entanglement distribution with 810 nm photons through telecom fibers,” Appl. Phys. Lett. 97, 031117–031117 (2010). [CrossRef]
  20. R. J. Collins, P. J. Clarke, V. Fernández, K. J. Gordon, M. N. Makhonin, J. A. Timpson, A. Tahraoui, M. Hopkinson, A. M. Fox, M. S. Skolnick, and G. S. Buller, “Quantum key distribution system in standard telecommunications fiber using a short wavelength single photon source,” J. Appl. Phys. 107, 073102 (2010). [CrossRef]
  21. A. Fedrizzi, T. Herbst, A. Poppe, T. Jennewein, and A. Zeilinger, “A wavelength-tunable fiber-coupled source of narrowband entangled photons,” Opt. Express 15, 15377–15386 (2007). [CrossRef] [PubMed]
  22. D. J. Barrett, R. E. Silverman, and R. G. Byrnes, SSH, the Secure Shell: the Definitive Guide (O’Reilly Media, 2005).
  23. J. Matthews, Computer Networking: Internet Protocols in Action (Wiley, 2005).
  24. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley, 2007).
  25. P. Townsend, “Experimental investigation of the performance limits for first telecommunications-window quantum cryptography systems,” IEEE Photonics Technol. Lett. 10, 1048–1050 (1998). [CrossRef]
  26. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002). [CrossRef]
  27. V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dusek, N. Lutkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81, 1301 (2009). [CrossRef]
  28. V. Scarani and R. Renato,, “Quantum cryptography with finite resources: unconditional security bound for discrete-variable protocols with one-way postprocessing”, Phys. Rev. Lett. 20, 200501 (2008).
  29. X. Ma, C.-H. F. Fung, and H.-K. Lo, “Quantum key distribution with entangled photon sources,” Phys. Rev. A 76, 012307 (2007). [CrossRef]
  30. T. Jennewein, M. Barbieri, and A. G. White, “Single-photon device requirements for operating linear optics quantum computing outside the post-selection basis,” J. Mod. Opt. 58, 276–287 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited