OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 21 — Oct. 10, 2011
  • pp: 20681–20690

Ultracompact all-optical XOR logic gate in a slow-light silicon photonic crystal waveguide

C. Husko, T. D. Vo, B. Corcoran, J. Li, T. F. Krauss, and B. J. Eggleton  »View Author Affiliations


Optics Express, Vol. 19, Issue 21, pp. 20681-20690 (2011)
http://dx.doi.org/10.1364/OE.19.020681


View Full Text Article

Enhanced HTML    Acrobat PDF (1968 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate an ultracompact, chip-based, all-optical exclusive-OR (XOR) logic gate via slow-light enhanced four-wave mixing (FWM) in a silicon photonic crystal waveguide (PhCWG). We achieve error-free operation (<10−9) for 40 Gbit/s differential phase-shift keying (DPSK) signals with a 2.8 dB power penalty. Slowing the light to vg = c/32 enables a FWM conversion efficiency, η, of −30 dB for a 396 μm device. The nonlinear FWM process is enhanced by 20 dB compared to a relatively fast mode of vg = c/5. The XOR operation requires ≈ 41 mW, corresponding to a switching energy of 1 pJ/bit. We compare the slow-light PhCWG device performance with experimentally demonstrated XOR DPSK logic gates in other platforms and discuss scaling the device operation to higher bit-rates. The ultracompact structure suggests the potential for device integration.

© 2011 OSA

OCIS Codes
(060.5060) Fiber optics and optical communications : Phase modulation
(130.3750) Integrated optics : Optical logic devices
(130.5296) Integrated optics : Photonic crystal waveguides

ToC Category:
Integrated Optics

History
Original Manuscript: August 16, 2011
Revised Manuscript: September 23, 2011
Manuscript Accepted: September 26, 2011
Published: October 4, 2011

Citation
C. Husko, T. D. Vo, B. Corcoran, J. Li, T. F. Krauss, and B. J. Eggleton, "Ultracompact all-optical XOR logic gate in a slow-light silicon photonic crystal waveguide," Opt. Express 19, 20681-20690 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-21-20681


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics4, 690–695 (2010). [CrossRef]
  2. T. D. Vo, M. D. Pelusi, J. Schröder, F. Luan, S. J. Madden, D.-Y. Choi, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Simultaneous multi-impairment monitoring of 640 gb/s signals using photonic chip based rf spectrum analyzer,” Opt. Express18, 3938–3945 (2010). [CrossRef] [PubMed]
  3. H. Ji, M. Pu, H. Hu, M. Galili, L. Oxenløwe, K. Yvind, J. Hvam, and P. Jeppesen, “Optical waveform sampling and error-free demultiplexing of 1.28 Tb/s serial data in a nanoengineered silicon waveguide,” J. Lightwave Technol.29, 426–431 (2011). [CrossRef]
  4. A. Willner, O. Yilmaz, J. Wang, X. Wu, A. Bogoni, L. Zhang, and S. Nuccio, “Optically efficient nonlinear signal processing,” IEEE J. Sel. Top. Quantum Electron.17320–332 (2010).
  5. A. Bogoni, X. Wu, Z. Bakhtiari, S. Nuccio, and A. E. Willner, “640 Gbits/s photonic logic gates,” Opt. Lett.35, 3955–3957 (2010). [CrossRef] [PubMed]
  6. A. H. Gnauck and P. J. Winzer, “Optical phase-shift-keyed transmission,” J. Lightwave Technol.23, 115–130 (2005). [CrossRef]
  7. J. Wang, Q. Sun, and J. Sun, “All-optical 40 Gbit/s CSRZ-DPSK logic XOR gate and format conversion using four-wave mixing,” Opt. Express17, 12555–12563 (2009). [CrossRef] [PubMed]
  8. I. Kang, C. Dorrer, and J. Leuthold, “All-optical xor operation of 40 gbit/s phase-shift-keyed data using four-wave mixing in semiconductor optical amplifier,” Electron. Lett.40, 496–498 (2004). [CrossRef]
  9. N. Deng, K. Chan, C. K. Chan, and L. K. Chen, “An all-optical XOR logic gate for high-speed RZ-DPSK signals by FWM in semiconductor optical amplifier,” IEEE J. Sel. Top. Quantum Electron.12, 702–707 (2006). [CrossRef]
  10. J. Wang, J. Sun, X. Zhang, D. Huang, and M. M. Fejer, “Ultrafast all-optical three-input Boolean XOR operation for differential phase-shift keying signals using periodically poled lithium niobate,” Opt. Lett.33, 1419–1421 (2008). [CrossRef] [PubMed]
  11. M. V. Drummond, J. D. Reis, R. N. Nogueira, P. P. Monteiro, A. L. Teixeira, S. Shinada, N. Wada, and H. Ito, “Error-free wavelength conversion at 160 Gbit/s in PPLN waveguide at room temperature,” Electron. Lett.45, 1135–1137 (2009). [CrossRef]
  12. T. D. Vo, R. Pant, M. D. Pelusi, J. Schröder, D. Y. Choi, S. K. Debbarma, S. J. Madden, B. Luther-Davies, and B. J. Eggleton, “Photonic chip-based all-optical XOR gate for 40 and 160 Gbit/s DPSK signals,” Opt. Lett.36, 710–712 (2011). [CrossRef] [PubMed]
  13. R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics2, 35–38 (2007). [CrossRef]
  14. L. Zhang, R. Ji, L. Jia, L. Yang, P. Zhou, Y. Tian, P. Chen, Y. Lu, Z. Jiang, Y. Liu, and , “Demonstration of directed XOR/XNOR logic gates using two cascaded microring resonators,” Opt. Lett.35, 1620–1622 (2010). [CrossRef] [PubMed]
  15. D. J. Moss, L. Fu, I. Littler, and B. J. Eggleton, “Ultrafast all-optical modulation via two-photon absorption in silicon-on-insulator waveguides,” Electron. Lett.41, 320–321 (2005). [CrossRef]
  16. T. K. Liang, L. Nunes, M. Tsuchiya, K. S. Abedin, T. Miyazaki, D. Van Thourhout, W. Bogaerts, P. Dumon, R. Baets, and H. K. Tsang, “High speed logic gate using two-photon absorption in silicon waveguides,” Opt. Commun.265, 171–174 (2006). [CrossRef]
  17. V. M. N. Passaro and F. de Passaro, “All-optical and gate based on raman effect in silicon-on-insulator waveguide,” Opt. Quantum Electron.38, 877–888 (2006). [CrossRef]
  18. A. Biberman, B. G. Lee, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Wavelength multicasting in silicon photonic nanowires,” Opt. Express18, 18047–18055 (2010). [CrossRef] [PubMed]
  19. B. Corcoran, C. Monat, M. Pelusi, C. Grillet, T. P. White, L. O’Faolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Optical signal processing on a silicon chip at 640 Gb/s using slow-light,” Opt. Express18, 7770–7781 (2010). [CrossRef] [PubMed]
  20. T. Baba, “Slow light in photonic crystals,” Nat. Photonics2, 465–473 (2008). [CrossRef]
  21. M. Soljačić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater.3, 211–219 (2004). [CrossRef]
  22. N. A. R. Bhat and J. E. Sipe, “Optical pulse propagation in nonlinear photonic crystals,” Phys. Rev. E64, 056604 (2001). [CrossRef]
  23. T. F. Krauss, “−2670,” J. Phys. D: Appl. Phys.40, 2666 (2007). [CrossRef]
  24. C. Monat, M. de Sterke, and B. J. Eggleton, “Slow light enhanced nonlinear optics in periodic structures,” J. Opt.12, 104003 (2010). [CrossRef]
  25. C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B. Eggleton, T. White, L. O’Faolain, and T. F. Krauss, “Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides,” Opt. Express17, 2944–2953 (2009). [CrossRef] [PubMed]
  26. P. Colman, C. Husko, S. Combrié, I. Sagnes, C. W. Wong, and A. De Rossi, “Observation of soliton pulse compression in photonic crystal waveguides,” in Quantum Electronics and Laser Science Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper QPDA10. http://www.opticsinfobase.org/abstract.cfm?URI=QELS-2010-QPDA10 .
  27. C. Husko, S. Combrié, Q. Tran, F. Raineri, C. Wong, and A. De Rossi, “Non-trivial scaling of self-phase modulation and three-photon absorption in III–V photonic crystal waveguides,” Opt. Express17, 22442–22451 (2009). [CrossRef]
  28. K. Inoue, H. Oda, N. Ikeda, and K. Asakawa, “Enhanced third-order nonlinear effects in slow-light photonic-crystal slab waveguides of line defect,” Opt. Express17, 7206–7216 (2009). [CrossRef] [PubMed]
  29. B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics3, 206–210 (2009). [CrossRef]
  30. J. Li, L. O’Faolain, I. H. Rey, and T. F. Krauss, “Four-wave mixing in photonic crystal waveguides: slow light enhancement and limitations,” Opt. Express19, 4458–4463 (2011). [CrossRef] [PubMed]
  31. C. Monat, M. Ebnali-Heidari, C. Grillet, B. Corcoran, B. J. Eggleton, T. P. White, L. O’Faolain, J. Li, and T. F. Krauss, “Four-wave mixing in slow light engineered silicon photonic crystal waveguides,” Opt. Express18, 22915–22927 (2010). [CrossRef] [PubMed]
  32. J. F. McMillan, M. Yu, D.-L. Kwong, and C. W. Wong, “Observation of four-wave mixing in slow-light silicon photonic crystal waveguides,” Opt. Express18, 15484–15497 (2010). [CrossRef] [PubMed]
  33. V. Eckhouse, I. Cestier, G. Eisenstein, S. Combrié, P. Colman, A. De Rossi, M. Santagiustina, C. Someda, and G. Vadalà, “Highly efficient four wave mixing in GaInP photonic crystal waveguides,” Opt. Lett.35, 1440–1442 (2010). [CrossRef] [PubMed]
  34. K. Suzuki, Y. Hamachi, and T. Baba, “Fabrication and characterization of chalcogenide glass photonic crystal waveguides,” Opt. Express17, 22393–22400 (2009). [CrossRef]
  35. B. Corcoran, M. D. Pelusi, C. Monat, J. Li, L. O’Faolain, T. F. Krauss, and B. J. Eggleton, “Ultracompact 160 gbaud all-optical demultiplexing exploiting slow light in an engineered silicon photonic crystal waveguide,” Opt. Lett.36, 1728–1730 (2011). [CrossRef] [PubMed]
  36. M. Santagiustina, C. Someda, G. Vadala, S. Combrie, and A. De Rossi, “Theory of slow light enhanced four-wave mixing in photonic crystal waveguides,” Opt. Express18, 21024–21029 (2010). [CrossRef] [PubMed]
  37. A. Y. Petrov and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett.85, 4866–4868 (2004). [CrossRef]
  38. J. Li, T. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express16, 6227–6232 (2008). [CrossRef] [PubMed]
  39. M. A. F. Roelens, S. Frisken, J. Bolger, D. Abakoumov, G. Baxter, S. Poole, and B. J. Eggleton, “Dispersion trimming in a reconfigurable wavelength selective switch,” J. Lightwave Technol.26, 73–78 (2008). [CrossRef]
  40. L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, “Photonic crystal waveguides with semi-slow light and tailored dispersion properties,” Opt. Express14, 9444–9450 (2006). [CrossRef] [PubMed]
  41. L. O’Faolain, S. A. Schulz, D. M. Beggs, T. P. White, M. Spasenović, L. Kuipers, F. Morichetti, A. Melloni, S. Mazoyer, J. P. Hugonin, P. Lalanne, and T. F. Krauss, “Loss engineered slow light waveguides,” Opt. Express18, 27627–27638 (2010). [CrossRef]
  42. R. Tucker, “Green Optical Communications—Part II: Energy Limitations in Networks,” IEEE J. Selected Topics in Quantum Electronics, pp. 1–14 (2011).
  43. F. Li, T. D. Vo, C. Husko, M. Pelusi, D.-X. Xu, A. Densmore, R. Ma, S. Janz, B. J. Eggleton, and D. J. Moss, “All-optical XOR logic gate for 40Gb/s DPSK signals via FWM in a silicon nanowire,” IEEE Photonics ConferenceArlington, VA, USA (2011).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited